Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors

Piezoelectric sensors with high performance and low-to-zero power consumption meet the growing demand in the flexible microelectronic system with small size and low power consumption, which are promising in robotics and prosthetics, wearable devices and electronic skin. In this review, the developme...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 10; p. 2820
Main Authors Duan, Shengshun, Wu, Jun, Xia, Jun, Lei, Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.05.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Piezoelectric sensors with high performance and low-to-zero power consumption meet the growing demand in the flexible microelectronic system with small size and low power consumption, which are promising in robotics and prosthetics, wearable devices and electronic skin. In this review, the development process, application scenarios and typical cases are discussed. In addition, several strategies to improve the performance of piezoelectric sensors are summed up: (1) material innovation: from piezoelectric semiconductor materials, inorganic piezoceramic materials, organic piezoelectric polymer, nanocomposite materials, to emerging and promising molecular ferroelectric materials. (2) designing microstructures on the surface of the piezoelectric materials to enlarge the contact area of piezoelectric materials under the applied force. (3) addition of dopants such as chemical elements and graphene in conventional piezoelectric materials. (4) developing piezoelectric transistors based on piezotronic effect. In addition, the principle, advantages, disadvantages and challenges of every strategy are discussed. Apart from that, the prospects and directions of piezoelectric sensors are predicted. In the future, the electronic sensors need to be embedded in the microelectronic systems to play the full part. Therefore, a strategy based on peripheral circuits to improve the performance of piezoelectric sensors is proposed in the final part of this review.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1424-8220
1424-8220
DOI:10.3390/s20102820