RRG-GAN Restoring Network for Simple Lens Imaging System
The simple lens computational imaging method provides an alternative way to achieve high-quality photography. It simplifies the design of the optical-front-end to a single-convex-lens and delivers the correction of optical aberration to a dedicated computational restoring algorithm. Traditional sing...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 10; p. 3317 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The simple lens computational imaging method provides an alternative way to achieve high-quality photography. It simplifies the design of the optical-front-end to a single-convex-lens and delivers the correction of optical aberration to a dedicated computational restoring algorithm. Traditional single-convex-lens image restoration is based on optimization theory, which has some shortcomings in efficiency and efficacy. In this paper, we propose a novel Recursive Residual Groups network under Generative Adversarial Network framework (RRG-GAN) to generate a clear image from the aberrations-degraded blurry image. The RRG-GAN network includes dual attention module, selective kernel network module, and residual resizing module to make it more suitable for the non-uniform deblurring task. To validate the evaluation algorithm, we collect sharp/aberration-degraded datasets by CODE V simulation. To test the practical application performance, we built a display-capture lab setup and reconstruct a manual registering dataset. Relevant experimental comparisons and actual tests verify the effectiveness of our proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21103317 |