Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution
In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe 3+ and Mn 2+ ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomp...
Saved in:
Published in | RSC advances Vol. 8; no. 22; pp. 12376 - 12389 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared
via
a co-precipitation reaction of Fe
3+
and Mn
2+
ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic(
v
) were used in this study as model water pollutants. With an increase in the GO content in the range of 10 wt% to 50 wt%, the removal efficiency for both MB dye and arsenic(
v
) ions was improved. Our adsorption data revealed that the adsorption behavior of MB dye showed good agreement with the Langmuir isotherm model and pseudo-second-order equation, whereas the Freundlich isotherm model was more suitable for simulating the adsorption process of arsenic(
v
) ions on the MFO-GO nanocomposites. In addition, an important role of the GO content in the adsorption mechanisms of both MB dye and arsenic(
v
) ions was found, in which GO nanosheets play a key role in the mechanisms of electrostatic/ionic interactions, oxygen-containing groups and π-π conjugation in the case of the adsorption of MB dye, whereas the role of the GO content is mainly related to the mechanism of electrostatic/ionic interactions in the case of the adsorption of arsenic(
v
). Graphene oxide has the functions of increasing the number of active binding sites comprising oxygen-containing functional groups, reducing the agglomeration of MFO nanoparticles, increasing the number of adsorption sites, and improving the electrostatic/ionic interactions between adsorbents and adsorbates in order to enhance the adsorption performance of cationic organic dyes and/or heavy metal anions from aqueous solutions.
In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared
via
a co-precipitation reaction of Fe
3+
and Mn
2+
ions in a GO suspension. |
---|---|
AbstractList | In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe3+ and Mn2+ ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic(v) were used in this study as model water pollutants. With an increase in the GO content in the range of 10 wt% to 50 wt%, the removal efficiency for both MB dye and arsenic(v) ions was improved. Our adsorption data revealed that the adsorption behavior of MB dye showed good agreement with the Langmuir isotherm model and pseudo-second-order equation, whereas the Freundlich isotherm model was more suitable for simulating the adsorption process of arsenic(v) ions on the MFO-GO nanocomposites. In addition, an important role of the GO content in the adsorption mechanisms of both MB dye and arsenic(v) ions was found, in which GO nanosheets play a key role in the mechanisms of electrostatic/ionic interactions, oxygen-containing groups and π–π conjugation in the case of the adsorption of MB dye, whereas the role of the GO content is mainly related to the mechanism of electrostatic/ionic interactions in the case of the adsorption of arsenic(v). Graphene oxide has the functions of increasing the number of active binding sites comprising oxygen-containing functional groups, reducing the agglomeration of MFO nanoparticles, increasing the number of adsorption sites, and improving the electrostatic/ionic interactions between adsorbents and adsorbates in order to enhance the adsorption performance of cationic organic dyes and/or heavy metal anions from aqueous solutions. In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe 3+ and Mn 2+ ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic( v ) were used in this study as model water pollutants. With an increase in the GO content in the range of 10 wt% to 50 wt%, the removal efficiency for both MB dye and arsenic( v ) ions was improved. Our adsorption data revealed that the adsorption behavior of MB dye showed good agreement with the Langmuir isotherm model and pseudo-second-order equation, whereas the Freundlich isotherm model was more suitable for simulating the adsorption process of arsenic( v ) ions on the MFO-GO nanocomposites. In addition, an important role of the GO content in the adsorption mechanisms of both MB dye and arsenic( v ) ions was found, in which GO nanosheets play a key role in the mechanisms of electrostatic/ionic interactions, oxygen-containing groups and π–π conjugation in the case of the adsorption of MB dye, whereas the role of the GO content is mainly related to the mechanism of electrostatic/ionic interactions in the case of the adsorption of arsenic( v ). Graphene oxide has the functions of increasing the number of active binding sites comprising oxygen-containing functional groups, reducing the agglomeration of MFO nanoparticles, increasing the number of adsorption sites, and improving the electrostatic/ionic interactions between adsorbents and adsorbates in order to enhance the adsorption performance of cationic organic dyes and/or heavy metal anions from aqueous solutions. In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared a co-precipitation reaction of Fe and Mn ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic(v) were used in this study as model water pollutants. With an increase in the GO content in the range of 10 wt% to 50 wt%, the removal efficiency for both MB dye and arsenic(v) ions was improved. Our adsorption data revealed that the adsorption behavior of MB dye showed good agreement with the Langmuir isotherm model and pseudo-second-order equation, whereas the Freundlich isotherm model was more suitable for simulating the adsorption process of arsenic(v) ions on the MFO-GO nanocomposites. In addition, an important role of the GO content in the adsorption mechanisms of both MB dye and arsenic(v) ions was found, in which GO nanosheets play a key role in the mechanisms of electrostatic/ionic interactions, oxygen-containing groups and π-π conjugation in the case of the adsorption of MB dye, whereas the role of the GO content is mainly related to the mechanism of electrostatic/ionic interactions in the case of the adsorption of arsenic(v). Graphene oxide has the functions of increasing the number of active binding sites comprising oxygen-containing functional groups, reducing the agglomeration of MFO nanoparticles, increasing the number of adsorption sites, and improving the electrostatic/ionic interactions between adsorbents and adsorbates in order to enhance the adsorption performance of cationic organic dyes and/or heavy metal anions from aqueous solutions. In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe 3+ and Mn 2+ ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic( v ) were used in this study as model water pollutants. With an increase in the GO content in the range of 10 wt% to 50 wt%, the removal efficiency for both MB dye and arsenic( v ) ions was improved. Our adsorption data revealed that the adsorption behavior of MB dye showed good agreement with the Langmuir isotherm model and pseudo-second-order equation, whereas the Freundlich isotherm model was more suitable for simulating the adsorption process of arsenic( v ) ions on the MFO-GO nanocomposites. In addition, an important role of the GO content in the adsorption mechanisms of both MB dye and arsenic( v ) ions was found, in which GO nanosheets play a key role in the mechanisms of electrostatic/ionic interactions, oxygen-containing groups and π-π conjugation in the case of the adsorption of MB dye, whereas the role of the GO content is mainly related to the mechanism of electrostatic/ionic interactions in the case of the adsorption of arsenic( v ). Graphene oxide has the functions of increasing the number of active binding sites comprising oxygen-containing functional groups, reducing the agglomeration of MFO nanoparticles, increasing the number of adsorption sites, and improving the electrostatic/ionic interactions between adsorbents and adsorbates in order to enhance the adsorption performance of cationic organic dyes and/or heavy metal anions from aqueous solutions. In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe 3+ and Mn 2+ ions in a GO suspension. |
Author | Dinh, Ngo Xuan Lan, Hoang Tuan, Pham Anh Le, Anh-Tuan Phan, Vu Ngoc Lan Huong, Pham Thi Tu, Nguyen Thang, Le Hong Van Quy, Nguyen |
AuthorAffiliation | Hanoi University of Science and Technology (HUST) Advanced Institute for Science and Technology (AIST) International Training Institute for Materials Science (ITIMS) Vietnam Metrology Institute School of Materials Science and Engineering University of Transport Technology Saigon University (SGU) Department of Nanoscience and Nanotechnology Hanoi University of Science and Technology |
AuthorAffiliation_xml | – name: University of Transport Technology – name: Saigon University (SGU) – name: Advanced Institute for Science and Technology (AIST) – name: International Training Institute for Materials Science (ITIMS) – name: School of Materials Science and Engineering – name: Hanoi University of Science and Technology (HUST) – name: Hanoi University of Science and Technology – name: Vietnam Metrology Institute – name: Department of Nanoscience and Nanotechnology |
Author_xml | – sequence: 1 givenname: Pham Thi surname: Lan Huong fullname: Lan Huong, Pham Thi – sequence: 2 givenname: Nguyen surname: Tu fullname: Tu, Nguyen – sequence: 3 givenname: Hoang surname: Lan fullname: Lan, Hoang – sequence: 4 givenname: Le Hong surname: Thang fullname: Thang, Le Hong – sequence: 5 givenname: Nguyen surname: Van Quy fullname: Van Quy, Nguyen – sequence: 6 givenname: Pham Anh surname: Tuan fullname: Tuan, Pham Anh – sequence: 7 givenname: Ngo Xuan surname: Dinh fullname: Dinh, Ngo Xuan – sequence: 8 givenname: Vu Ngoc surname: Phan fullname: Phan, Vu Ngoc – sequence: 9 givenname: Anh-Tuan surname: Le fullname: Le, Anh-Tuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35539375$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1UREvbC3eQpV4K0lLHX4k5VFpWFJBaISE4W15nvOsqsYOdVPR38Qfxdtul1Bdbfh-_M-OZl2gvxAAIvarI-4owdWabZAihNbHP0AElXM4okWrv0XkfHed8TcqSoqKyeoH2mRBMsVocoD8XU7Cjj8F0uDdhZQJkwA5S8iOcrZIZ1hAAx9--BRxMiDb2Q8xFzB8wOAd2zDg6_ISMAY9rwKbNMQ0be9yDXZvgc3-Hx1QieYuvPuL2tnChxT48XM7z6c1bXB5l7FLssfk1QZwyzrGbNl5H6LkzXYbj-_0Q_bz49GPxZXb57fPXxfxyZrlU48wypQgwsqwq3pCaC9UIyuumNURYYI3jRhgjlbXSEdta55ZkKRQwYYA2nLFDdL71HaZlD62FMCbT6SH53qRbHY3X_yvBr_Uq3mhFakVrUQxO7w1SLDXkUfc-W-i68sulIE2lpIJzJTaxTp6g13FKpSuFIrTitWyaulDvtpRNMecEbpdMRfRmHPSi-T6_G4dFgd88Tn-HPjS_AK-3QMp2p_6bJ_YX-_S_8g |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_06_109 crossref_primary_10_1007_s11356_022_19314_8 crossref_primary_10_1016_j_cej_2021_128800 crossref_primary_10_2139_ssrn_4109920 crossref_primary_10_1007_s10854_024_12230_2 crossref_primary_10_1088_2053_1591_ab94fc crossref_primary_10_1016_j_jwpe_2022_103346 crossref_primary_10_3390_separations10070398 crossref_primary_10_3390_nano11061471 crossref_primary_10_1016_j_memsci_2023_121475 crossref_primary_10_1016_j_matchemphys_2020_123108 crossref_primary_10_1039_D3RA05481K crossref_primary_10_1016_j_rechem_2023_100797 crossref_primary_10_1016_j_jpcs_2020_109333 crossref_primary_10_1016_j_jece_2021_105043 crossref_primary_10_1007_s13762_022_04587_w crossref_primary_10_1016_j_cherd_2019_10_013 crossref_primary_10_1016_j_jallcom_2023_170576 crossref_primary_10_1016_j_jece_2023_109885 crossref_primary_10_1038_s41598_023_36595_2 crossref_primary_10_1016_j_jenvman_2021_113466 crossref_primary_10_1002_pc_27411 crossref_primary_10_1016_j_jhazmat_2021_127483 crossref_primary_10_1007_s11270_021_04985_9 crossref_primary_10_1016_j_molliq_2022_119967 crossref_primary_10_1016_j_ceramint_2020_05_011 crossref_primary_10_1007_s00339_018_2092_5 crossref_primary_10_1016_j_psep_2024_06_001 crossref_primary_10_1155_2022_7385541 crossref_primary_10_1080_03067319_2021_1897121 crossref_primary_10_1016_j_jpcs_2023_111490 crossref_primary_10_1016_j_matchemphys_2022_126374 crossref_primary_10_1038_s41598_023_28431_4 crossref_primary_10_1016_j_jconrel_2022_08_011 crossref_primary_10_1016_j_ccr_2019_213111 crossref_primary_10_1155_2021_4636531 crossref_primary_10_1007_s11051_019_4701_4 crossref_primary_10_1016_j_cclet_2020_05_011 crossref_primary_10_1038_s41598_023_29081_2 crossref_primary_10_1155_2022_3954536 crossref_primary_10_3390_ma14185394 crossref_primary_10_1016_j_physe_2020_114527 crossref_primary_10_1007_s10668_022_02440_1 crossref_primary_10_1016_j_chemosphere_2019_01_063 crossref_primary_10_4028_www_scientific_net_MSF_1028_291 crossref_primary_10_1016_j_envpol_2022_119557 crossref_primary_10_3390_ma15228185 crossref_primary_10_1016_j_matchemphys_2022_125727 crossref_primary_10_3390_ma14237456 crossref_primary_10_1039_D1NA00818H crossref_primary_10_3389_fchem_2024_1347129 crossref_primary_10_3390_nano12071112 crossref_primary_10_1007_s10854_021_07202_9 crossref_primary_10_1016_j_micromeso_2023_112567 crossref_primary_10_1016_j_ijbiomac_2023_126585 crossref_primary_10_1016_j_eti_2022_102823 crossref_primary_10_1016_j_optlastec_2022_108443 crossref_primary_10_1016_j_chemosphere_2020_126008 crossref_primary_10_31857_S0207401X23070130 crossref_primary_10_1007_s11270_020_04751_3 crossref_primary_10_1016_j_ccr_2020_213180 crossref_primary_10_1016_j_matchemphys_2022_126123 crossref_primary_10_1021_acssusresmgt_3c00107 crossref_primary_10_1021_acsomega_3c02006 crossref_primary_10_1016_j_jwpe_2019_100911 crossref_primary_10_1007_s10854_023_10237_9 crossref_primary_10_1007_s10934_020_00877_1 crossref_primary_10_1002_vjch_201900044 crossref_primary_10_1134_S1990793123040139 crossref_primary_10_1007_s11356_019_06683_w crossref_primary_10_1016_j_ceramint_2019_09_232 crossref_primary_10_1007_s11696_023_02896_z crossref_primary_10_1016_j_ijbiomac_2024_129263 crossref_primary_10_1016_j_apsusc_2021_152005 crossref_primary_10_1016_j_chemosphere_2023_139363 crossref_primary_10_1007_s42247_024_00725_x crossref_primary_10_1016_j_apmt_2020_100801 crossref_primary_10_1080_03067319_2021_1977930 crossref_primary_10_1016_j_enmm_2022_100693 crossref_primary_10_1016_j_ceramint_2022_01_358 crossref_primary_10_1016_j_chemosphere_2020_127324 crossref_primary_10_1007_s00339_020_03760_7 crossref_primary_10_1016_j_solener_2022_12_011 crossref_primary_10_1088_1361_6463_aac7ce crossref_primary_10_1002_asia_202400482 crossref_primary_10_1002_slct_202200574 crossref_primary_10_1002_adfm_202007356 crossref_primary_10_1016_j_molliq_2020_114047 |
Cites_doi | 10.1021/cr100230z 10.1007/s00339-014-8962-6 10.1021/am504826q 10.1016/j.cej.2011.03.060 10.1016/j.chemosphere.2017.04.049 10.1016/j.jcis.2011.05.050 10.1039/C6RA10134H 10.1039/C4CP04835K 10.1126/science.289.5477.284 10.1021/es203439v 10.1039/C6RA24320G 10.1016/j.cej.2016.03.051 10.4236/ns.2012.41004 10.1039/c6cs00921b 10.1021/cr300133d 10.1039/C5RA11601E 10.1002/tcr.201500279 10.1016/j.jhazmat.2012.02.068 10.1021/ie2026212 10.3961/jpmph.14.036 10.1007/s42114-017-0004-3 10.1007/s11664-015-4314-3 10.1039/c2ra21623j |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/c8ra00270c |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 12389 |
ExternalDocumentID | 10_1039_C8RA00270C 35539375 c8ra00270c |
Genre | Journal Article |
GroupedDBID | -JG 0-7 AAEMU ABGFH AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I R7C R7E R7G RCNCU RPMJG RRC RSCEA SLH SMJ 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABPDG ABXOH ACGFS ADBBV ADMRA AENEX AESAV AFLYV AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT BCNDV BLAPV EBS EJD GROUPED_DOAJ H13 HZ~ M~E NPM O9- OK1 PGMZT RPM RVUXY ZCN AAYXX ABASK AETIL AFPKN ANBJS AUNWK CITATION ECGLT J3G J3H RAOCF ROYLF YAE 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c469t-c3990e30b114807459852478da05ce38f4a5aa69cc6f0cdcffb0b59e35ae28433 |
IEDL.DBID | RPM |
ISSN | 2046-2069 |
IngestDate | Tue Sep 17 20:49:12 EDT 2024 Fri Oct 25 22:32:34 EDT 2024 Thu Oct 10 17:07:11 EDT 2024 Fri Aug 23 02:35:50 EDT 2024 Wed Oct 16 00:40:57 EDT 2024 Mon Jan 28 17:06:55 EST 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-c3990e30b114807459852478da05ce38f4a5aa69cc6f0cdcffb0b59e35ae28433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6570-1316 0000-0002-5648-3414 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079275/ |
PMID | 35539375 |
PQID | 2021476887 |
PQPubID | 2047525 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9079275 pubmed_primary_35539375 proquest_journals_2021476887 proquest_miscellaneous_2662544953 crossref_primary_10_1039_C8RA00270C rsc_primary_c8ra00270c |
ProviderPackageCode | J3I R7E RRC R7G AEFDR RPMJG -JG AGSTE RCNCU AUDPV EF- SLH BSQNT EE0 SMJ RSCEA AFVBQ C6K H~N 0-7 ABGFH AAEMU R7C |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | C8RA00270C-(cit1)/*[position()=1] Le (C8RA00270C-(cit14)/*[position()=1]) 2016; 27 Huong (C8RA00270C-(cit13)/*[position()=1]) 2016; 45 Kant (C8RA00270C-(cit4)/*[position()=1]) 2012; 4 Zhao (C8RA00270C-(cit21)/*[position()=1]) 2011; 45 Peng (C8RA00270C-(cit11)/*[position()=1]) 2016; 6 Kumar (C8RA00270C-(cit12)/*[position()=1]) 2014; 6 Zhu (C8RA00270C-(cit24)/*[position()=1]) 2015; 5 Ramesha (C8RA00270C-(cit19)/*[position()=1]) 2011; 361 Phan (C8RA00270C-(cit18)/*[position()=1]) 2011; 170 Vorosmarty (C8RA00270C-(cit2)/*[position()=1]) 2000; 289 Chung (C8RA00270C-(cit3)/*[position()=1]) 2014; 47 Tahir (C8RA00270C-(cit6)/*[position()=1]) 2016; 16 Lingamdinne (C8RA00270C-(cit23)/*[position()=1]) 2016; 6 Yu (C8RA00270C-(cit25)/*[position()=1]) 2015; 17 Hu (C8RA00270C-(cit22)/*[position()=1]) 2017; 181 Dinh (C8RA00270C-(cit16)/*[position()=1]) 2015; 119 Yamaguchi (C8RA00270C-(cit17)/*[position()=1]) 2016; 295 Ali (C8RA00270C-(cit5)/*[position()=1]) 2012; 112 Polshettiwar (C8RA00270C-(cit8)/*[position()=1]) 2011; 11 Das (C8RA00270C-(cit9)/*[position()=1]) 2017 Yu (C8RA00270C-(cit7)/*[position()=1]) 2018; 1 Fan (C8RA00270C-(cit20)/*[position()=1]) 2012; 215–216 Fu (C8RA00270C-(cit10)/*[position()=1]) 2012; 51 Sheng (C8RA00270C-(cit15)/*[position()=1]) 2012; 2 |
References_xml | – volume: 11 start-page: 3036 year: 2011 ident: C8RA00270C-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100230z contributor: fullname: Polshettiwar – volume: 119 start-page: 85 year: 2015 ident: C8RA00270C-(cit16)/*[position()=1] publication-title: Appl. Phys. A doi: 10.1007/s00339-014-8962-6 contributor: fullname: Dinh – volume: 6 start-page: 17426 year: 2014 ident: C8RA00270C-(cit12)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504826q contributor: fullname: Kumar – volume: 170 start-page: 226 year: 2011 ident: C8RA00270C-(cit18)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.060 contributor: fullname: Phan – volume: 181 start-page: 328 year: 2017 ident: C8RA00270C-(cit22)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.049 contributor: fullname: Hu – volume: 361 start-page: 270 year: 2011 ident: C8RA00270C-(cit19)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.05.050 contributor: fullname: Ramesha – volume: 6 start-page: 73776 year: 2016 ident: C8RA00270C-(cit23)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA10134H contributor: fullname: Lingamdinne – volume: 17 start-page: 4388 year: 2015 ident: C8RA00270C-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04835K contributor: fullname: Yu – volume: 289 start-page: 284 year: 2000 ident: C8RA00270C-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.289.5477.284 contributor: fullname: Vorosmarty – volume: 45 start-page: 10454 year: 2011 ident: C8RA00270C-(cit21)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es203439v contributor: fullname: Zhao – ident: C8RA00270C-(cit1)/*[position()=1] – volume: 27 start-page: 15570701 year: 2016 ident: C8RA00270C-(cit14)/*[position()=1] publication-title: Nanotechnology contributor: fullname: Le – volume: 6 start-page: 104549 year: 2016 ident: C8RA00270C-(cit11)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA24320G contributor: fullname: Peng – volume: 295 start-page: 391 year: 2016 ident: C8RA00270C-(cit17)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.051 contributor: fullname: Yamaguchi – volume: 4 start-page: 17027 year: 2012 ident: C8RA00270C-(cit4)/*[position()=1] publication-title: Natural Sci. doi: 10.4236/ns.2012.41004 contributor: fullname: Kant – year: 2017 ident: C8RA00270C-(cit9)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00921b contributor: fullname: Das – volume: 112 start-page: 5073 year: 2012 ident: C8RA00270C-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300133d contributor: fullname: Ali – volume: 5 start-page: 67951 year: 2015 ident: C8RA00270C-(cit24)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA11601E contributor: fullname: Zhu – volume: 16 start-page: 1591 year: 2016 ident: C8RA00270C-(cit6)/*[position()=1] publication-title: Chem. Rec. doi: 10.1002/tcr.201500279 contributor: fullname: Tahir – volume: 215–216 start-page: 272 year: 2012 ident: C8RA00270C-(cit20)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.02.068 contributor: fullname: Fan – volume: 51 start-page: 725 year: 2012 ident: C8RA00270C-(cit10)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2026212 contributor: fullname: Fu – volume: 47 start-page: 253 year: 2014 ident: C8RA00270C-(cit3)/*[position()=1] publication-title: J. Prev. Med. Public Health doi: 10.3961/jpmph.14.036 contributor: fullname: Chung – volume: 1 start-page: 56 year: 2018 ident: C8RA00270C-(cit7)/*[position()=1] publication-title: Adv. Compos. Hybrd. Mater. doi: 10.1007/s42114-017-0004-3 contributor: fullname: Yu – volume: 45 start-page: 2372 year: 2016 ident: C8RA00270C-(cit13)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s11664-015-4314-3 contributor: fullname: Huong – volume: 2 start-page: 12400 year: 2012 ident: C8RA00270C-(cit15)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra21623j contributor: fullname: Sheng |
SSID | ssj0000651261 |
Score | 2.5445094 |
Snippet | In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared
via
a co-precipitation reaction of Fe
3+
and Mn
2+
ions in a GO... In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared a co-precipitation reaction of Fe and Mn ions in a GO suspension. The... In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared via a co-precipitation reaction of Fe3+ and Mn2+ ions in a GO suspension.... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 12376 |
SubjectTerms | Adsorbates Adsorption Aqueous solutions Arsenic Binding sites Chemical precipitation Chemistry Computer simulation Conjugation Dyes Ferrites Functional groups Graphene Heavy metals Ionic interactions Isotherms Magnetic properties Manganese ions Methylene blue Nanocomposites Pollutants |
Title | Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35539375 https://www.proquest.com/docview/2021476887 https://search.proquest.com/docview/2662544953 https://pubmed.ncbi.nlm.nih.gov/PMC9079275 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11iwS9IL5KA2VlBAc4pEnWceJwWyJWFdIiVLFoOUWO40Ak4lSbbQW_iz_I2IkXlt64JqN8zYvnjT1-A_CyjkRkp8DMqpsfCy58LmfCR6aQsCwSjEmzOXn5ITlfxe_XbH0AzO2FsUX7smzO9Pf2TDffbG3lZSsDVycWfFzmmNBls5QFE5ggQP9K0YfhF2NYEjkpUpoFkm-ESb9CeQS3Mb4aDTi2H4dukMubNZKTjWsJYkPP4h7cHTkjmQ_Pdh8OlH4Ad3LXqu0h_FpgdBom9Ugr9Fdh2kqS2ogublVgNalxSCPdj6ZSRAvdmUJyU62l-jdkrOggXU3-sew0QXpIRNV3GzuykFaZjcJN31rzoSOUJMu3pPqJdroijXYH5_2r69fEgJqYLSxE4Jt3Vz1xWH8Eq8W7T_m5P3Zj8CWm0FtfIpUJFQ1Lk0Eh8WAZZ7M45ZUImVSU17FgQiSZlEkdykrWdRmWLFOUCYUxkNJjONSdVidA0pRKGiuWVqmIkUCJJCqFUURkkVk2lB68cL4pLgfRjcIultOsyPnF3Doz9-DUua0Yf7y-mBkNOEyheOrB891pdIdZB8Gvjy9aIAyNMFvGqAePBy_vbuPg4UG65_-dgZHj3j-DKLWy3CMqPThGpOzs_4DvyX9f8ikcIU_jw8zPKRxuN1fqGXKhbTm1cwhT-wdM4dbF59X6y2_t9xA2 |
link.rule.ids | 230,315,730,783,787,867,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK98C4NFDCCAxyySdZxHtyWFasFuhVCLeotchwHIhqn2mQR8Lf4g4ydeGHbE1zj0W4e33i-scffADwvAx6YJTC96-aGPOFuIsbcRaYQsTTgjAl9OHlxHM1Pw3dn7GwLmD0LY4r2RV6N1Hk9UtUXU1t5UQvP1ol5HxZTTOjSccy8bbiG_upHfyXp_QSMUSwKrBgpTT2RLLlOwHyxB9cxwmoVOLYZia7Qy6tVkttL2xTEBJ_ZTfhkb7uvOfk6WnX5SPy8pOj4z891C24MdJRM-uHbsCXVHdid2i5wd-HXDANfv15Iaq4-c92xkpRaz7GTnpG7xtmSNN-rQhLFVaNr1HUhmGxfkaFYhDQluWTZKILMk_CibZZm0iK11GeQq7Y25n2zKUEWr0nxA-1UQSplL07aF99eEu0vRJ-OIRxfabNqiXWje3A6e3MynbtDowdXYHbeuQJZki-pn-vkDDkNSxM2DuOk4D4TkiZlyBnnUSpEVPqiEGWZ-zlLJWVcYnildB92VKPkAZA4poKGksVFzEPkZjwKcq7FFlmgdySFA8_sR88uej2PzOzD0zSbJh8nBiVTBw4tHrLBp9tsrOXlMDtLYgeerofxc-gtFnz7-KAZIlxrvqWMOnC_h8_6byzuHIg3gLU20ErfmyMIFKP4PQDDgX2E4Nr-D6of_PdPPoHd-cniKDt6e_z-IewhHUz6BaZD2OmWK_kIKVeXPzYO9hvR8y9v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIpVeeJcGChjBAQ7ZJOs4D25LYFUeW1WIShWXyHEcWJU4q00WAX-LP8jYiZdue-s1GeX5jecbe_wNwIsq4IGZAtOrbm7IE-4mYsxdZAoRSwPOmNCbk2dH0eFJ-OGUnZ5r9WWK9kUxH6kf9UjNv5vaykUtPFsn5h3PMkzo0nHMvEVZeVtwHX3WT84l6v0gjJEsCqwgKU09kSy5TsJ8sQs7GGW1EhzbjEaXKOblSsmtpW0MYgLQ9BZ8tY_e152cjVZdMRJ_Lqg6XundbsPNgZaSSW9yB65JdRduZLYb3D34O8UA2M8bkpqrb1x3riSV1nXspGdkr3HUJM2veSmJ4qrRteq6IEy2r8lQNEKailywbBRBBkp42TZLM3iRWuq9yPO2NuZ90ylBZm9I-RvtVEnmyh6ctC9_viLab4jeJUM4ftZm1RLrTvfhZPruS3boDg0fXIFZeucKZEu-pH6hkzTkNixN2DiMk5L7TEiaVCFnnEepEFHli1JUVeEXLJWUcYlhltI92FaNkvtA4pgKGkoWlzEPkaPxKCi4Fl1kgV6ZFA48tz8-X_S6HrlZj6dpniWfJwYpmQMHFhP54NttPtYyc5ilJbEDz9an8XfopRb8-viiOSJda7-ljDrwoIfQ-jYWew7EG-BaG2jF780zCBaj_D2Aw4E9hOHa_j-yH175kk9h5_jtNP_0_ujjI9hFVpj080wHsN0tV_IxMq-ueGJ87B8mHjHv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+manganese+ferrite%2Fgraphene+oxide+nanocomposites%3A+effects+of+graphene+oxide+on+the+adsorption+mechanisms+of+organic+MB+dye+and+inorganic+As%28v%29+ions+from+aqueous+solution&rft.au=Lan+Huong%2C+Pham+Thi&rft.au=Tu%2C+Nguyen&rft.au=Lan%2C+Hoang&rft.au=Thang%2C+Le+Hong&rft.date=2018-01-01&rft.eissn=2046-2069&rft.volume=8&rft.issue=22&rft.spage=12376&rft.epage=12389&rft_id=info:doi/10.1039%2Fc8ra00270c&rft.externalDocID=c8ra00270c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |