Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter

There is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 9; p. 2790
Main Authors Di Antonio, Andrea, Popoola, Olalekan A M, Ouyang, Bin, Saffell, John, Jones, Roderic L
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.08.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e.g., optical particle counters, OPCs) can help address this issue; however, their application under ambient conditions can be affected by high relative humidity ( ) conditions. Here, we show how, by exploiting the measured particle size distribution information rather than PM as has been suggested elsewhere, a correction can be derived which not only significantly improves sensor performance but which also retains fundamental information on particle composition. A particle size distribution⁻based correction algorithm, founded on κ -Köhler theory, was developed to account for the influence of on sensor measurements. The application of the correction algorithm, which assumed physically reasonable κ values, resulted in a significant improvement, with the overestimation of PM measurements reduced from a factor of ~5 before correction to 1.05 after correction. We conclude that a correction based on particle size distribution, rather than PM mass, is required to properly account for effects and enable low cost optical PM sensors to provide reliable ambient PM measurements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18092790