Multi-Conditional Constraint Generative Adversarial Network-Based MR Imaging from CT Scan Data

Magnetic resonance (MR) imaging is an important computer-aided diagnosis technique with rich pathological information. The factor of physical and physiological constraint seriously affects the applicability of that technique. Thus, computed tomography (CT)-based radiotherapy is more popular on accou...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 11; p. 4043
Main Authors Liu, Mingjie, Zou, Wei, Wang, Wentao, Jin, Cheng-Bin, Chen, Junsheng, Piao, Changhao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic resonance (MR) imaging is an important computer-aided diagnosis technique with rich pathological information. The factor of physical and physiological constraint seriously affects the applicability of that technique. Thus, computed tomography (CT)-based radiotherapy is more popular on account of its imaging rapidity and environmental simplicity. Therefore, it is of great theoretical and practical significance to design a method that can construct an MR image from the corresponding CT image. In this paper, we treat MR imaging as a machine vision problem and propose a multi-conditional constraint generative adversarial network (GAN) for MR imaging from CT scan data. Considering reversibility of GAN, both generator and reverse generator are designed for MR and CT imaging, respectively, which can constrain each other and improve consistency between features of CT and MR images. In addition, we innovatively treat the real and generated MR image discrimination as object re-identification; cosine error fusing with original GAN loss is designed to enhance verisimilitude and textural features of the MR image. The experimental results with the challenging public CT-MR image dataset show distinct performance improvement over other GANs utilized in medical imaging and demonstrate the effect of our method for medical image modal transformation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22114043