A Correction Method for Wet Gas Flow Metering Using a Standard Orifice and Slotted Orifices

Flow measurements that utilize differential pressure meters are commonly applied in industry. In such conditions, gas flow is often accompanied by liquid condensation. For this reason, errors occur in the metering process that can be attributed to the fluctuations in continuous phase parameters in t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 7; p. 2291
Main Authors Tomaszewska-Wach, Barbara, Rzasa, Mariusz
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Flow measurements that utilize differential pressure meters are commonly applied in industry. In such conditions, gas flow is often accompanied by liquid condensation. For this reason, errors occur in the metering process that can be attributed to the fluctuations in continuous phase parameters in the flow. Furthermore, the occurrence of a dispersed phase results in flow disturbance and dynamic pressure pulsations. For the above reasons, new methods and tools are sought with the purpose of performing measurements of gas-liquid flows providing measurement results that can be considered as fairly accurate in the cases when flow involves a liquid phase form. The paper reports the results of a study involving measurement of wet gas flow using differential pressure flowmeters. The experiments were conducted for three constant mass air flow rates equal to 0.06, 0.078 and 0.086 kg/s. After stabilization of the air flow rates, water was fed into the pipe with flow rates in the range from 0.01 to 0.16 kg/s. The research involved a standard orifice and three types of slotted orifices with various slot arrangements and geometries. The analysis focused on the effect of orifice geometry on the flow metering results. On the basis of the results, it was found that the slotted orifice generates smaller differential pressure values compared to the standard orifice. The water mass fraction in the gas leads to overestimated results of measurements across the flowmeter. Regardless of the type of the orifice, is necessary to undertake a correction of the results. The paper proposes a method of gas mass flow correction. The results were compared with the common over-reading correction models available in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21072291