A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration

Digital calibration using adaptive signal processing corrects for offset mismatch, gain mismatch, and sample-time error between time-interleaved channels in a 10-b 120-Msample/s pipelined analog-to-digital converter (ADC). Offset mismatch between channels is overcome with a random chopper-based offs...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 37; no. 12; pp. 1618 - 1627
Main Authors Jamal, S.M., Daihong Fu, Chang, N.C.-J., Hurst, P.J., Lewis, S.H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Digital calibration using adaptive signal processing corrects for offset mismatch, gain mismatch, and sample-time error between time-interleaved channels in a 10-b 120-Msample/s pipelined analog-to-digital converter (ADC). Offset mismatch between channels is overcome with a random chopper-based offset calibration. Gain mismatch and sample-time error are overcome with correlation-based algorithms, which drive the correlation between a signal and its chopped image or its chopped and delayed image to zero. Test results show that, with a 0.99-MHz sinusoidal input, the ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 56.8 dB, a peak integral nonlinearity of 0.88 least significant bit (LSB), and a peak differential nonlinearity of 0.44 LSB. For a 39.9-MHz sinusoidal input, the ADC achieves a peak SNDR of 50.2 dB. The active area is 5.2 mm/sup 2/, and the power dissipation is 234 mW from a 3.3-V supply.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2002.804327