Light and Displacement Compensation-Based iPPG for Heart-Rate Measurement in Complex Detection Conditions
A light and displacement-compensation-based iPPG algorithm is proposed in this paper for heart-rate measurement in complex detection conditions. Two compensation sub-algorithms, including light compensation and displacement compensation, are designed and integrated into the iPPG algorithm for more a...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 11; p. 3346 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.05.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A light and displacement-compensation-based iPPG algorithm is proposed in this paper for heart-rate measurement in complex detection conditions. Two compensation sub-algorithms, including light compensation and displacement compensation, are designed and integrated into the iPPG algorithm for more accurate heart-rate measurement. In the light-compensation sub-algorithm, the measurement deviation caused by the ambient light change is compensated by the mean filter-based light adjustment strategy. In the displacement-compensation sub-algorithm, the measurement deviation caused by the subject motion is compensated by the optical flow-based displacement calculation strategy. A series of heart-rate measurement experiments are conducted to verify the effectiveness of the proposed method. Compared with conventional iPPG, the average measurement accuracy increases by 3.8% under different detection distances and 5.0% under different light intensities. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24113346 |