Reliability of a Low-Cost Inertial Measurement Unit (IMU) to Measure Punch and Kick Velocity
Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with th...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 307 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm. This involved strike segmentation and numerical integration to determine velocity. The system demonstrated moderate reliability (intraclass correlation coefficient (ICC) 3,1 = 0.746 to 0.786, standard error of measurement (SEM) = 0.488 to 0.921 m/s), comparable to commercially available systems. Biological and technical variations, as well as test standardization issues, were acknowledged as factors influencing reliability. Despite a relatively low sampling frequency, the hardware and software showed potential for reliable measurement. The study highlights the importance of considering within-subject variability, hardware limitations, and the impact of noise in software algorithms. Average strike velocities exhibited higher reliability than peak velocities, making them a practical choice for performance tracking, although they may underestimate true peak performance. Future research should validate the system against gold-standard methods and determine the optimal sampling frequency to enhance measurement accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25020307 |