Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data

The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow res...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 1; p. 75
Main Authors Rindal, Ole Marius Hoel, Seeberg, Trine M, Tjønnås, Johannes, Haugnes, Pål, Sandbakk, Øyvind
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.12.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier's arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier's arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researchers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18010075