Calcium Supplement Derived from Gallus gallus domesticus Promotes BMP-2/RUNX2/SMAD5 and Suppresses TRAP/RANK Expression through MAPK Signaling Activation

The present study evaluated the effects of a calcium (Ca) supplement derived from (GD) on breaking force, microarchitecture, osteogenic differentiation and osteoclast differentiation factor expression in vivo in Ca-deficient ovariectomized (OVX) rats. One percent of Ca supplement significantly impro...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 9; no. 5; p. 504
Main Authors Yoo, Han Seok, Kim, Gyung-Ji, Song, Da Hye, Chung, Kang-Hyun, Lee, Kwon-Jai, Kim, Dong-Hee, An, Jeung Hee
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.05.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study evaluated the effects of a calcium (Ca) supplement derived from (GD) on breaking force, microarchitecture, osteogenic differentiation and osteoclast differentiation factor expression in vivo in Ca-deficient ovariectomized (OVX) rats. One percent of Ca supplement significantly improved Ca content and bone strength of the tibia. In micro-computed tomography analysis, 1% Ca supplement attenuated OVX- and low Ca-associated changes in bone mineral density, trabecular thickness, spacing and number. Moreover, 1% Ca-supplemented diet increased the expression of osteoblast differentiation marker genes, such as bone morphogenetic protein-2, Wnt3a, small mothers against decapentaplegic 1/5/8, runt-related transcription factor 2, osteocalcin and collagenase-1, while it decreased the expression of osteoclast differentiation genes, such as thrombospondin-related anonymous protein, cathepsin K and receptor activator of nuclear factor kappa B. Furthermore, 1% Ca-supplemented diet increased the levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase. The increased expression of osteoblast differentiation marker genes and activation of mitogen-activated protein kinase signaling were associated with significant increases in trabecular bone volume, which plays an important role in the overall skeletal strength. Our results demonstrated that 1% Ca supplement inhibited osteoclastogenesis, stimulated osteoblastogenesis and restored bone loss in OVX rats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-6643
2072-6643
DOI:10.3390/nu9050504