Membrane ruffles capture C3bi-opsonized particles in activated macrophages
A widespread belief in phagocyte biology is that FcgammaR-mediated phagocytosis utilizes membrane pseudopods, whereas Mac-1-mediated phagocytosis does not involve elaborate plasma membrane extensions. Here we report that dynamic membrane ruffles in activated macrophages promote binding of C3bi-opson...
Saved in:
Published in | Molecular biology of the cell Vol. 19; no. 11; pp. 4628 - 4639 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society for Cell Biology
01.11.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A widespread belief in phagocyte biology is that FcgammaR-mediated phagocytosis utilizes membrane pseudopods, whereas Mac-1-mediated phagocytosis does not involve elaborate plasma membrane extensions. Here we report that dynamic membrane ruffles in activated macrophages promote binding of C3bi-opsonized particles. We identify these ruffles as components of the macropinocytosis machinery in both PMA- and LPS-stimulated macrophages. C3bi-particle capture is facilitated by enrichment of high-affinity Mac-1 and the integrin-regulating protein talin in membrane ruffles. Membrane ruffle formation and C3bi-particle binding are cytoskeleton dependent events, having a strong requirement for F-actin and microtubules (MTs). MT disruption blunts ruffle formation and PMA- and LPS-induced up-regulation of surface Mac-1 expression. Furthermore, the MT motor, kinesin participates in ruffle formation implicating a requirement for intracellular membrane delivery to active membrane regions during Mac-1-mediated phagocytosis. We observed colocalization of Rab11-positive vesicles with CLIP-170, a MT plus-end binding protein, at sites of particle adherence using TIRF imaging. Rab11 has been implicated in recycling endosome dynamics and mutant Rab11 expression inhibits both membrane ruffle formation and C3bi-sRBC adherence to macrophages. Collectively these findings represent a novel membrane ruffle "capture" mechanism for C3bi-particle binding during Mac-1-mediated phagocytosis. Importantly, this work also demonstrates a strong functional link between integrin activation, macropinocytosis and phagocytosis in macrophages. |
---|---|
ISSN: | 1059-1524 1939-4586 |
DOI: | 10.1091/mbc.E08-02-0223 |