Effect of intracranial pressure on photoplethysmographic waveform in different cerebral perfusion territories: A computational study

Background: Intracranial photoplethysmography (PPG) signals can be measured from extracranial sites using wearable sensors and may enable long-term non-invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP changes can lead to waveform changes in intracranial PPG sig...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 14; p. 1085871
Main Authors Liu, Haipeng, Pan, Fan, Lei, Xinyue, Hui, Jiyuan, Gong, Ru, Feng, Junfeng, Zheng, Dingchang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 16.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Intracranial photoplethysmography (PPG) signals can be measured from extracranial sites using wearable sensors and may enable long-term non-invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP changes can lead to waveform changes in intracranial PPG signals. Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG signals of different cerebral perfusion territories. Methods: Based on lump-parameter Windkessel models, we developed a computational model consisting three interactive parts: cardiocerebral artery network, ICP model, and PPG model. We simulated ICP and PPG signals of three perfusion territories [anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and 75% decrease). We calculated following PPG waveform features: maximum, minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive index (RI), and max-to-mean ratio (MMR). Results: The simulated mean ICPs in normal condition were in the normal range (8.87–11.35 mm Hg), with larger PPG fluctuations in older subject and ACA/PCA territories. When intracranial capacitance decreased, the mean ICP increased above normal threshold (>20 mm Hg), with significant decreases in maximum, minimum, and mean; a minor decrease in amplitude; and no consistent change in min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG signals of all perfusion territories. There were significant effects of age and territory on all waveform features except age on mean. Conclusion: ICP values could significantly change the value-relevant (maximum, minimum, and amplitude) waveform features of PPG signals measured from different cerebral perfusion territories, with negligible effect on shape-relevant features (min-to-max time, PI, RI, and MMR). Age and measurement site could also significantly influence intracranial PPG waveform.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Lucas Omar Müller, University of Trento, Italy
Alexander Ruesch, Carnegie Mellon University, United States
Reviewed by: Wenjun Tan, Northeastern University, China
This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology
ISSN:1664-042X
1664-042X
DOI:10.3389/fphys.2023.1085871