Classification and Recognition of Soybean Quality Based on Hyperspectral Imaging and Random Forest Methods

To achieve the rapid and accurate classification and identification of soybean components, this study selected soybeans harvested by the 4LZ-1.5 soybean combine harvester as the research subject. Hyperspectral images of soybean samples were collected using the Pika L spectrometer, and spectral infor...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 5; p. 1539
Main Authors Chen, Man, Chang, Zhichang, Jin, Chengqian, Cheng, Gong, Wang, Shiguo, Ni, Youliang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To achieve the rapid and accurate classification and identification of soybean components, this study selected soybeans harvested by the 4LZ-1.5 soybean combine harvester as the research subject. Hyperspectral images of soybean samples were collected using the Pika L spectrometer, and spectral information was extracted from the regions of interest (ROI) in the images. Eight preprocessing methods, including baseline correction (BC), moving average (MA), Savitzky–Golay derivative (SGD), normalization, standard normal variate transformation (SNV), multiplicative scatter correction (MSC), first derivative (DS), and Savitzky–Golay smoothing (SGS), were applied to the raw spectral data to eliminate irrelevant information. Feature wavelengths were selected using the successive projections algorithm (SPA) and the competitive adaptive reweighted sampling (CARS) algorithm to reduce spectral redundancy and enhance model detection performance, retaining eight and ten feature wavelengths, respectively. Subsequently, a random forest (RF) model was developed for soybean component classification. The model parameters were optimized using particle swarm optimization (PSO) and differential evolution (DE) algorithms to improve performance. Experimental results showed that the RF classification model based on SPA-BC preprocessed spectra and DE-tuned parameters achieved an optimal prediction accuracy of 1.0000 during training. This study demonstrates the feasibility of using hyperspectral imaging technology for the rapid and accurate detection of soybean components, providing technical support for the assessment of breakage and impurity levels during soybean harvesting and storage processes. It also offers a reference for the development of future machine-harvested soybean breakage and impurity detection systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25051539