GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior

The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 71; no. 7; pp. 1410 - 1423
Main Authors Samms, Ricardo J., Cosgrove, Richard, Snider, Brandy M., Furber, Ellen C., Droz, Brian A., Briere, Daniel A., Dunbar, James, Dogra, Mridula, Alsina-Fernandez, Jorge, Borner, Tito, De Jonghe, Bart C., Hayes, Matthew R., Coskun, Tamer, Sloop, Kyle W., Emmerson, Paul J., Ai, Minrong
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist reduced conditioned taste avoidance (CTA) without affecting hypophagia mediated by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were found to be expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in detecting aversive stimuli. Peripheral administration of a GIPR agonist induced neuronal activation (cFos) in the AP. Further, whole-brain cFos analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), a brainstem nucleus that relays aversive/emetic signals to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPR agonist treatment reduces PYY-induced nausea-like behavior. Together, the results of our study indicate a novel mechanism by which GIP-based therapeutics may have benefit in improving the tolerability of weight loss agents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0012-1797
1939-327X
1939-327X
DOI:10.2337/db21-0848