Neural dynamics of reaching following incorrect or absent motor preparation
Moving is thought to take separate preparation and execution steps. During preparation, neural activity in primary motor and dorsal premotor cortices achieves a state specific to an upcoming action but movements are not performed until the execution phase. We investigated whether this preparatory st...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 81; no. 2; pp. 438 - 451 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
22.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Moving is thought to take separate preparation and execution steps. During preparation, neural activity in primary motor and dorsal premotor cortices achieves a state specific to an upcoming action but movements are not performed until the execution phase. We investigated whether this preparatory state (more precisely, prepare-and-hold state) is required for movement execution using two complementary experiments. We compared monkeys' neural activity during delayed and nondelayed reaches and in a delayed reaching task in which the target switched locations on a small percentage of trials. Neural population activity bypassed the prepare-and-hold state both in the absence of a delay and if the wrong reach was prepared. However, the initial neural response to the target was similar across behavioral conditions. This suggests that the prepare-and-hold state can be bypassed if needed, but there is a short-latency preparatory step that is performed prior to movement even without a delay. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Undefined-2 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2013.11.003 |