Asynchronous Control of P300-Based Brain–Computer Interfaces Using Sample Entropy

Brain–computer interfaces (BCI) have traditionally worked using synchronous paradigms. In recent years, much effort has been put into reaching asynchronous management, providing users with the ability to decide when a command should be selected. However, to the best of our knowledge, entropy metrics...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 21; no. 3; p. 230
Main Authors Martínez-Cagigal, Víctor, Santamaría-Vázquez, Eduardo, Hornero, Roberto
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.02.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Brain–computer interfaces (BCI) have traditionally worked using synchronous paradigms. In recent years, much effort has been put into reaching asynchronous management, providing users with the ability to decide when a command should be selected. However, to the best of our knowledge, entropy metrics have not yet been explored. The present study has a twofold purpose: (i) to characterize both control and non-control states by examining the regularity of electroencephalography (EEG) signals; and (ii) to assess the efficacy of a scaled version of the sample entropy algorithm to provide asynchronous control for BCI systems. Ten healthy subjects participated in the study, who were asked to spell words through a visual oddball-based paradigm, attending (i.e., control) and ignoring (i.e., non-control) the stimuli. An optimization stage was performed for determining a common combination of hyperparameters for all subjects. Afterwards, these values were used to discern between both states using a linear classifier. Results show that control signals are more complex and irregular than non-control ones, reaching an average accuracy of 94 . 40 % in classification. In conclusion, the present study demonstrates that the proposed framework is useful in monitoring the attention of a user, and granting the asynchrony of the BCI system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e21030230