Controlling the Mdm2-Mdmx-p53 Circuit

The p53 tumor suppressor is a key protein in maintaining the integrity of the genome by inducing either cell cycle arrest or apoptosis following cellular stress signals. Two human family members, Mdm2 and Mdmx, are primarily responsible for inactivating p53 transcription and targeting p53 protein fo...

Full description

Saved in:
Bibliographic Details
Published inPharmaceuticals Vol. 3; no. 5; pp. 1576 - 1593
Main Authors Waning, David L, Lehman, Jason A, Batuello, Christopher N, Mayo, Lindsey D
Format Journal Article Book Review
LanguageEnglish
Published Switzerland MDPI AG 18.05.2010
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The p53 tumor suppressor is a key protein in maintaining the integrity of the genome by inducing either cell cycle arrest or apoptosis following cellular stress signals. Two human family members, Mdm2 and Mdmx, are primarily responsible for inactivating p53 transcription and targeting p53 protein for ubiquitin-mediated degradation. In response to genotoxic stress, post-translational modifications to p53, Mdm2 and Mdmx stabilize and activate p53. The role that phosphorylation of these molecules plays in the cellular response to genotoxic agents has been extensively studied with respect to cancer biology. In this review, we discuss the main phosphorylation events of p53, Mdm2 and Mdmx in response to DNA damage that are important for p53 stability and activity. In tumors that harbor wild-type p53, reactivation of p53 by modulating both Mdm2 and Mdmx signaling is well suited as a therapeutic strategy. However, the rationale for development of kinase inhibitors that target the Mdm2-Mdmx-p53 axis must be carefully considered since modulation of certain kinase signaling pathways has the potential to destabilize and inactivate p53.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8247
1424-8247
DOI:10.3390/ph3051576