ARNS: Adaptive Relay-Node Selection Method for Message Broadcasting in the Internet of Vehicles
The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Re...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 5; p. 1338 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.02.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Region of Interest (RoI), even in the communication range of a sender. In this paper, we propose an adaptive relay-node selection (ARNS) method based on the exponential partition to implement message broadcasting in complex scenarios. First, we improved a relay-node selection method in the curved road scenarios through the re-definition of the optimal position considering the distribution of the obstacles. Then, we proposed a criterion of classifying road structures based on their broadcast characteristics. Finally, ARNS is designed to adaptively apply the appropriate relay-node selection method based on the exponential partition in realistic scenarios. Simulation results on a real-world map show that the end-to-end broadcast delay of ARNS is reduced by at least 13.8% compared to the beacon-based relay-node selection method, and at least 14.0% compared to the trinary partitioned black-burst-based broadcast protocol (3P3B)-based relay-node selection method. The broadcast coverage is increased by 3.6-7% in curved road scenarios, with obstacles benefitting from the consideration of the distribution of obstacles. Moreover, ARNS achieves a higher and more stable packet delivery ratio (PDR) than existing methods profiting from the adaptive selection mechanism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20051338 |