Role of sex in lung cancer risk prediction based on single low-dose chest computed tomography
A validated open-source deep-learning algorithm called Sybil can accurately predict long-term lung cancer risk from a single low-dose chest computed tomography (LDCT). However, Sybil was trained on a majority-male cohort. Use of artificial intelligence algorithms trained on imbalanced cohorts may le...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 18611 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A validated open-source deep-learning algorithm called Sybil can accurately predict long-term lung cancer risk from a single low-dose chest computed tomography (LDCT). However, Sybil was trained on a majority-male cohort. Use of artificial intelligence algorithms trained on imbalanced cohorts may lead to inequitable outcomes in real-world settings. We aimed to study whether Sybil predicts lung cancer risk equally regardless of sex. We analyzed 10,573 LDCTs from 6127 consecutive lung cancer screening participants across a health system between 2015 and 2021. Sybil achieved AUCs of 0.89 (95% CI: 0.85–0.93) for females and 0.89 (95% CI: 0.85–0.94) for males at 1 year, p = 0.92. At 6 years, the AUC was 0.87 (95% CI: 0.83–0.93) for females and 0.79 (95% CI: 0.72–0.86) for males, p = 0.01. In conclusion, Sybil can accurately predict future lung cancer risk in females and males in a real-world setting and performs better in females than in males for predicting 6-year lung cancer risk. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-45671-6 |