Hand Gesture Recognition Using an IR-UWB Radar with an Inception Module-Based Classifier

The emerging integration of technology in daily lives has increased the need for more convenient methods for human–computer interaction (HCI). Given that the existing HCI approaches exhibit various limitations, hand gesture recognition-based HCI may serve as a more natural mode of man–machine intera...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 2; p. 564
Main Authors Ahmed, Shahzad, Cho, Sung Ho
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The emerging integration of technology in daily lives has increased the need for more convenient methods for human–computer interaction (HCI). Given that the existing HCI approaches exhibit various limitations, hand gesture recognition-based HCI may serve as a more natural mode of man–machine interaction in many situations. Inspired by an inception module-based deep-learning network (GoogLeNet), this paper presents a novel hand gesture recognition technique for impulse-radio ultra-wideband (IR-UWB) radars which demonstrates a higher gesture recognition accuracy. First, methodology to demonstrate radar signals as three-dimensional image patterns is presented and then, the inception module-based variant of GoogLeNet is used to analyze the pattern within the images for the recognition of different hand gestures. The proposed framework is exploited for eight different hand gestures with a promising classification accuracy of 95%. To verify the robustness of the proposed algorithm, multiple human subjects were involved in data acquisition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20020564