Enhanced Out-of-Stock Detection in Retail Shelf Images Based on Deep Learning

The term out-of-stock (OOS) describes a problem that occurs when shoppers come to a store and the product they are seeking is not present on its designated shelf. Missing products generate huge sales losses and may lead to a declining reputation or the loss of loyal customers. In this paper, we prop...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 2; p. 693
Main Authors Šikić, Franko, Kalafatić, Zoran, Subašić, Marko, Lončarić, Sven
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The term out-of-stock (OOS) describes a problem that occurs when shoppers come to a store and the product they are seeking is not present on its designated shelf. Missing products generate huge sales losses and may lead to a declining reputation or the loss of loyal customers. In this paper, we propose a novel deep-learning (DL)-based OOS-detection method that utilizes a two-stage training process and a post-processing technique designed for the removal of inaccurate detections. To develop the method, we utilized an OOS detection dataset that contains a commonly used fully empty OOS class and a novel class that represents the frontal OOS. We present a new image augmentation procedure in which some existing OOS instances are enlarged by duplicating and mirroring themselves over nearby products. An object-detection model is first pre-trained using only augmented shelf images and, then, fine-tuned on the original data. During the inference, the detected OOS instances are post-processed based on their aspect ratio. In particular, the detected instances are discarded if their aspect ratio is higher than the maximum or lower than the minimum instance aspect ratio found in the dataset. The experimental results showed that the proposed method outperforms the existing DL-based OOS-detection methods and detects fully empty and frontal OOS instances with 86.3% and 83.7% of the average precision, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24020693