Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis

Both obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study ai...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 14; p. 1101854
Main Authors Cai, Yisheng, Zuo, Xuemei, Zuo, Yuyang, Wu, Shuang, Pang, Weiwei, Ma, Keqiang, Yi, Qiaorong, Tan, Lijun, Deng, Hongwen, Qu, Xiaochao, Chen, Xiangding
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets. The RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network. We identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database. Five key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Pingping Li, Chinese Academy of Medical Sciences and Peking Union Medical College, China
Reviewed by: Hong-Hui Wang, Hunan University, China; Zheng Zhang, Nankai University, China; Zuomin Wang, Capital Medical University, China
This article was submitted to Inflammation, a section of the journal Frontiers in Immunology
These authors have contributed equally to this work and share first authorship
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2023.1101854