Personalized Fair Split Learning for Resource-Constrained Internet of Things

With the flourishing development of the Internet of Things (IoT), federated learning has garnered significant attention as a distributed learning method aimed at preserving the privacy of participant data. However, certain IoT devices, such as sensors, face challenges in effectively employing conven...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 1; p. 88
Main Authors Chen, Haitian, Chen, Xuebin, Peng, Lulu, Bai, Yuntian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.12.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the flourishing development of the Internet of Things (IoT), federated learning has garnered significant attention as a distributed learning method aimed at preserving the privacy of participant data. However, certain IoT devices, such as sensors, face challenges in effectively employing conventional federated learning approaches due to limited computational and storage resources, which hinder their ability to train complex local models. Additionally, in IoT environments, devices often face problems of data heterogeneity and uneven benefit distribution between them. To address these challenges, a personalized and fair split learning framework is proposed for resource-constrained clients. This framework first adopts a U-shaped structure, dividing the model to enable resource-constrained clients to offload subsets of the foundational model to a central server while retaining personalized model subsets locally to meet the specific personalized requirements of different clients. Furthermore, to ensure fair benefit distribution, a model-aggregation method with optimized aggregation weights is used. This method reasonably allocates model-aggregation weights based on the contributions of clients, thereby achieving collaborative fairness. Experimental results demonstrate that, in three distinct data heterogeneity scenarios, employing personalized training through this framework exhibits higher accuracy compared to existing baseline methods. Simultaneously, the framework ensures collaborative fairness, fostering a more balanced and sustainable cooperation among IoT devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24010088