Biodegradable High‐Density Polyethylene‐like Material
We report a novel polyester material generated from readily available biobased 1,18‐octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene‐like solid‐state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting poi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 6; pp. e202213438 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2023
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report a novel polyester material generated from readily available biobased 1,18‐octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene‐like solid‐state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting point (Tm=96 °C) and hydrophobic nature, polyester‐2,18 is subject to rapid and complete hydrolytic degradation in in vitro assays with isolated naturally occurring enzymes. Under industrial composting conditions (ISO standard 14855‐1) the material is biodegraded with mineralization above 95 % within two months. Reference studies with polyester‐18,18 (Tm=99 °C) reveal a strong impact of the nature of the diol repeating unit on degradation rates, possibly related to the density of ester groups in the amorphous phase. Depolymerization by methanolysis indicates suitability for closed‐loop recycling.
While it resembles high density polyethylene with regard to its mechanical properties and solid‐state structure and has a high melting point (Tm=96 °C), the novel polyester‐2,18 material at the same time fully hydrolyzes in in vitro enzymatic degradation studies and mineralizes under industrial composting conditions (ISO standard 14855‐1) within two months. |
---|---|
Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202213438 |