Mesoporous silica/organosilica nanoparticles for cancer immunotherapy
Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano‐platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous sili...
Saved in:
Published in | Exploration (Beijing, China) Vol. 3; no. 3; pp. 20220086 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
China
John Wiley & Sons, Inc
01.06.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano‐platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal‐doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica‐based nanoplatforms.
Silica based nanoparticles have been extensively applied in nanomedicine including cancer immunotherapy. In this review, the applications of mesoporous silica nanoparticles (MSN), mesoporous organosilica nanoparticles (MON), and metal‐doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica‐based nanoplatforms. |
---|---|
AbstractList | Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano-platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal-doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica-based nanoplatforms. Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano-platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal-doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica-based nanoplatforms.Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano-platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal-doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica-based nanoplatforms. Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano‐platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal‐doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica‐based nanoplatforms. Silica based nanoparticles have been extensively applied in nanomedicine including cancer immunotherapy. In this review, the applications of mesoporous silica nanoparticles (MSN), mesoporous organosilica nanoparticles (MON), and metal‐doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica‐based nanoplatforms. Abstract Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano‐platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal‐doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica‐based nanoplatforms. |
Author | Yu, Chengzhong Theivendran, Shevanuja Lazarev, Sergei |
Author_xml | – sequence: 1 givenname: Shevanuja surname: Theivendran fullname: Theivendran, Shevanuja organization: The University of Queensland, Brisbane – sequence: 2 givenname: Sergei surname: Lazarev fullname: Lazarev, Sergei organization: The University of Queensland, Brisbane – sequence: 3 givenname: Chengzhong orcidid: 0000-0003-3707-0785 surname: Yu fullname: Yu, Chengzhong email: c.yu@uq.edu.au organization: The University of Queensland, Brisbane |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37933387$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URD_ojTOKxIVDt3XGjmMfUbVApSI4gMTNmvUHeJXEwU5U7X-Pt9ntoRKcPGP93vN43jk5GeLgCHlT0-uaUrhZ__x2DRSAUilekDNohVgBVfLkUMuGqlNymfOWFly2IIV8RU5Zqxhjsj0j6y8uxzGmOOcqhy4YvInpFw5xaaqhlCOmKZjO5crHVBkcjEtV6Pt5iNNvl3DcvSYvPXbZXR7OC_Lj4_r77efV_ddPd7cf7leGCyVWNTXWc8u9Nc4hp563DhWAVUJaQGBOeQ-0MALB-hqth7ZxzcaDaHht2AW5W3xtxK0eU-gx7XTEoB8vyuT6MKvmgoM0ihnHJPeyxaYWAstrlANuHr3eL15jin9mlyfdh2xc1-HgyjY0SCkUU6ypC_ruGbqNcxrKTzWjCmRZPt9Tbw_UvOmdfRrvuOwCwAKYFHNOzmsTJpxCHKaEodM11ftQdQlVH0MtoqtnoqPvP_BmwR9C53b_ZffNk-4va8mwzw |
CitedBy_id | crossref_primary_10_1002_smll_202307310 crossref_primary_10_1360_TB_2024_0670 crossref_primary_10_1002_smll_202400069 crossref_primary_10_1039_D4BM00556B crossref_primary_10_1021_acs_langmuir_4c01027 crossref_primary_10_3390_pharmaceutics15092239 crossref_primary_10_1039_D3NR05952A crossref_primary_10_3390_ijms25158066 crossref_primary_10_1002_adma_202306081 crossref_primary_10_1002_adma_202413002 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1002_advs_202405729 crossref_primary_10_1002_adfm_202502646 crossref_primary_10_3390_molecules30061257 crossref_primary_10_1080_1061186X_2025_2458616 crossref_primary_10_1021_acsami_4c21740 crossref_primary_10_1021_acsnano_4c11453 crossref_primary_10_2147_IJN_S498729 crossref_primary_10_1002_EXP_70012 crossref_primary_10_3390_molecules28237750 crossref_primary_10_3390_polym16223163 crossref_primary_10_1016_j_ijpharm_2023_123700 crossref_primary_10_1021_acs_langmuir_4c03433 crossref_primary_10_3389_fimmu_2024_1440226 crossref_primary_10_1002_smll_202407555 crossref_primary_10_1002_SMMD_20240053 crossref_primary_10_3389_fimmu_2024_1437068 crossref_primary_10_1021_cbe_4c00105 crossref_primary_10_1021_acsami_4c08415 crossref_primary_10_3389_fphar_2024_1518983 crossref_primary_10_1021_acsnano_3c08993 crossref_primary_10_3390_vaccines13020126 crossref_primary_10_1038_s41467_024_55430_4 crossref_primary_10_1021_jacs_4c10997 crossref_primary_10_1007_s40843_024_2932_3 crossref_primary_10_1039_D4BM01038H |
Cites_doi | 10.1021/cm0011559 10.1002/smll.201001459 10.1186/s12951-021-01073-2 10.1002/adhm.201700831 10.1002/adhm.201900039 10.1038/47229 10.1021/cm504448u 10.1039/D0BM02157A 10.1002/adfm.201800025 10.1021/acs.accounts.0c00280 10.1038/s41590-022-01132-2 10.1016/j.mattod.2017.06.003 10.1016/j.biomaterials.2018.05.025 10.1038/s41577-019-0269-6 10.1002/adma.201604634 10.1016/j.msec.2020.111526 10.1016/j.biomaterials.2020.120191 10.1016/j.biomaterials.2021.120654 10.1002/adfm.201902652 10.3390/s22010261 10.1021/acsnano.0c05392 10.1021/cm011074s 10.3389/fchem.2022.842682 10.1039/C8BM01669K 10.1038/s41467-017-01651-9 10.1038/s41467-019-09158-1 10.1038/359710a0 10.1038/s41568-019-0186-9 10.1021/accountsmr.1c00153 10.1016/j.toxlet.2009.04.017 10.3390/ijms21228605 10.1002/adfm.202002043 10.1016/j.apsb.2020.08.013 10.1021/cm1017344 10.1016/j.colsurfb.2020.111452 10.1016/j.jscs.2017.08.005 10.1016/j.mser.2019.01.001 10.1021/acsami.1c04305 10.1002/smll.202101897 10.1002/adma.201404226 10.1002/anie.202112752 10.1021/acscentsci.8b00035 10.7150/thno.18460 10.1016/j.cclet.2021.06.034 10.1039/D1NR04048K 10.1016/j.mtadv.2020.100069 10.1002/cplu.201600560 10.1021/acsnano.1c00498 10.1039/C7CC08222C 10.1002/smll.201402779 10.1002/mco2.6 10.1038/s41389-017-0011-9 10.1002/adfm.202010637 10.1021/acs.nanolett.0c00713 10.1002/wnan.1573 10.1016/j.biomaterials.2021.120990 10.1021/ja9916658 10.1002/adma.202008065 10.1016/j.micromeso.2009.11.015 10.1186/s12951-021-01025-w 10.1021/ja201779d 10.1016/j.jconrel.2019.08.028 10.1002/smll.201600677 10.1021/acsami.7b16118 10.1126/sciadv.aaz4462 10.1021/acsami.9b19446 10.1016/j.biomaterials.2017.04.028 10.1021/acsnano.0c07071 10.1021/acsami.0c10781 10.7150/thno.19987 10.1002/adma.201505524 10.1021/tx300166u 10.1016/j.biomaterials.2016.03.019 10.1039/D0BM01452D 10.1038/s41422-020-0337-2 10.1002/smll.202100006 10.1039/D0BM01168A 10.1016/j.micromeso.2010.01.009 10.1021/cm402592t 10.1038/s41598-017-03834-2 10.1002/advs.201901690 10.1016/j.biomaterials.2022.121368 10.1016/j.jcis.2011.05.038 10.1021/cm502777e 10.1021/ja3116873 10.1146/annurev-cancerbio-030518-055552 10.1002/adma.202004385 10.1016/j.cej.2020.126936 10.1002/anie.201701550 10.1016/j.phrs.2020.104742 10.1021/cm0204371 10.1080/02603594.2015.1088439 10.1021/cm9903935 10.1021/la302145j 10.1039/D1CS00659B 10.1021/acs.chemmater.5b03963 10.1016/j.jcis.2018.08.088 10.1039/c3cs35405a 10.1038/s41571-019-0308-z 10.1002/chem.201600587 10.1002/anie.201712027 10.1021/acsnano.2c03348 10.3389/fchem.2019.00290 10.1002/adtp.202000130 10.3389/fchem.2020.598722 10.1002/adma.201104763 10.1021/nn200365a 10.3390/biom10101429 10.1039/C8TB00544C 10.1016/j.apmt.2019.05.006 10.1016/j.semcancer.2017.03.001 10.1021/ar3000986 10.1021/acscentsci.8b00181 10.1016/j.biomaterials.2018.01.046 10.1016/j.msec.2021.112232 10.1016/j.addr.2012.07.018 10.1002/anie.201807595 10.1021/acs.nanolett.9b02448 10.1021/ar200343s 10.1016/j.biomaterials.2020.119859 10.1039/D0SC02803G |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. 2023 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2023 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7X8 DOA |
DOI | 10.1002/EXP.20220086 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2766-2098 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_46428c93ce384f87a5166aa92042ab1c 37933387 10_1002_EXP_20220086 EXP20220086 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Queensland Government – fundername: Australian Research Council – fundername: the University of Queensland and the Queensland node of the Australian National Fabrication Facility |
GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACCMX ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS ATCPS BENPR BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ M~E OK1 PATMY PIMPY PYCSY RPM AAYXX CITATION PHGZM PHGZT NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO WIN |
ID | FETCH-LOGICAL-c4696-10cdf4d4fdceea40f47ea922d968d2a23e9ff20df46a2df1adf275e5bf26541c3 |
IEDL.DBID | 24P |
ISSN | 2766-8509 2766-2098 |
IngestDate | Wed Aug 27 01:29:09 EDT 2025 Fri Jul 11 12:13:17 EDT 2025 Sat Jul 26 02:36:00 EDT 2025 Thu Apr 03 07:04:21 EDT 2025 Tue Jul 01 01:52:18 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Wed Jan 22 16:20:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cancer organosilica nanoparticles silica immunotherapy |
Language | English |
License | Attribution 2023 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4696-10cdf4d4fdceea40f47ea922d968d2a23e9ff20df46a2df1adf275e5bf26541c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3707-0785 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20220086 |
PMID | 37933387 |
PQID | 3092808641 |
PQPubID | 6853494 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_46428c93ce384f87a5166aa92042ab1c proquest_miscellaneous_2886939351 proquest_journals_3092808641 pubmed_primary_37933387 crossref_citationtrail_10_1002_EXP_20220086 crossref_primary_10_1002_EXP_20220086 wiley_primary_10_1002_EXP_20220086_EXP20220086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 2023-Jun 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Beijing |
PublicationTitle | Exploration (Beijing, China) |
PublicationTitleAlternate | Exploration (Beijing) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2002; 14 2017; 82 2018; 161 2020; 20 2013; 65 2019; 11 2019; 10 2020; 17 2022; 23 2014; 26 2019; 16 2019; 19 2020; 14 2020; 12 2020; 11 2022; 22 2020; 10 2016; 36 2018; 7 2018; 175 2018; 6 2010; 22 2022; 281 2018; 4 1992; 359 2019; 29 2012; 28 2021; 275 2011; 361 2012; 25 2012; 24 2019; 311‐312 2019; 8 2019; 7 2018; 28 2019; 3 2019; 6 2021; 269 2016; 91 2020; 32 2017; 133 2018; 22 2011; 5 2011; 7 2011; 133 2016; 12 2020; 30 2017; 56 2009; 189 2020; 155 2022; 10 2020; 21 2016; 28 2012; 45 2022; 16 2016; 22 2017; 7 2017; 8 2017; 43 2021; 127 2021; 405 1999; 121 1999; 402 2017; 9 2016; 79 2020; 8 2020; 6 2021; 32 2020; 3 2021; 31 2020; 1 2021; 33 2020; 53 2021; 118 1999; 11 2021; 197 2020; 256 2001; 13 2021; 9 2017; 20 2021; 2 2013; 46 2022; 51 2013; 42 2015; 11 2017; 29 2021; 13 2021; 15 2015; 27 2021; 11 2022; 61 2021; 17 2021; 19 2019; 137 2019; 533 2010; 132 2020; 239 2013; 135 2010; 131 2011; 47 2018; 54 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 Lin Y.‐S. (e_1_2_9_122_1) 2011; 47 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 Braun K. (e_1_2_9_118_1) 2016; 79 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 Song H. (e_1_2_9_36_1) 2022; 10 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Croissant J. G. (e_1_2_9_20_1) 2016; 22 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 65 start-page: 689 year: 2013 publication-title: Adv. Drug Delivery Rev. – volume: 155 year: 2020 publication-title: Pharmacol. Res. – volume: 137 start-page: 66 year: 2019 publication-title: Mater. Sci. Eng., R – volume: 22 start-page: 405 year: 2018 publication-title: J. Saudi Chem. Soc. – volume: 21 start-page: 8605 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 587 year: 2019 publication-title: Nat. Rev. Cancer – volume: 11 year: 2020 publication-title: Chem. Sci. – volume: 51 start-page: 5365 year: 2022 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1241 year: 2019 publication-title: Nat. Commun. – volume: 189 start-page: 177 year: 2009 publication-title: Toxicol. Lett. – volume: 402 start-page: 867 year: 1999 publication-title: Nature – volume: 7 start-page: 271 year: 2011 publication-title: Small – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 520 year: 2021 publication-title: Acta Pharm. Sin. B – volume: 14 year: 2020 publication-title: ACS Nano – volume: 1 start-page: 47 year: 2020 publication-title: MedComm – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 251 year: 2020 publication-title: Nat. Rev. Clin. Oncol. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 321 year: 2020 publication-title: Nat. Rev. Immunol. – volume: 8 year: 2020 publication-title: Front. Chem. – volume: 8 start-page: 6272 year: 2020 publication-title: Biomater. Sci. – volume: 269 year: 2021 publication-title: Biomaterials – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 10 start-page: 1429 year: 2020 publication-title: Biomolecules – volume: 2 start-page: 1190 year: 2021 publication-title: Acc. Mater. Res. – volume: 22 start-page: 261 year: 2022 publication-title: Sensors – volume: 7 start-page: 3007 year: 2017 publication-title: Theranostics – volume: 15 start-page: 8039 year: 2021 publication-title: ACS Nano – volume: 405 year: 2021 publication-title: J. Chem. Eng. – volume: 7 start-page: 4131 year: 2017 publication-title: Sci. Rep. – volume: 361 start-page: 16 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 161 start-page: 292 year: 2018 publication-title: Biomaterials – volume: 20 start-page: 346 year: 2017 publication-title: Mater. Today – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 533 start-page: 463 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 10 year: 2018 publication-title: Oncogenesis – volume: 9 start-page: 917 year: 2021 publication-title: Biomater. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 91 start-page: 90 year: 2016 publication-title: Biomaterials – volume: 281 year: 2022 publication-title: Biomaterials – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 127 year: 2021 publication-title: Mater. Sci. Eng., C – volume: 11 year: 2019 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 1678 year: 2012 publication-title: Acc. Chem. Res. – volume: 118 year: 2021 publication-title: Mater. Sci. Eng., C – volume: 11 start-page: 2743 year: 2015 publication-title: Small – volume: 13 start-page: 3306 year: 2001 publication-title: Chem. Mater. – volume: 22 start-page: 9607 year: 2016 publication-title: Eur. J. Chem. – volume: 22 start-page: 5093 year: 2010 publication-title: Chem. Mater. – volume: 275 year: 2021 publication-title: Biomaterials – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 328 year: 2021 publication-title: J. Nanobiotechnol. – volume: 24 start-page: 1504 year: 2012 publication-title: Adv. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 2265 year: 2012 publication-title: Chem. Res. Toxicol. – volume: 311‐312 start-page: 1 year: 2019 publication-title: J. Controlled Release – volume: 57 start-page: 4902 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 year: 2022 publication-title: Front. Chem. – volume: 197 year: 2021 publication-title: Colloids Surf., B – volume: 42 start-page: 3862 year: 2013 publication-title: Chem. Soc. Rev. – volume: 82 start-page: 631 year: 2017 publication-title: ChemPlusChem – volume: 359 start-page: 710 year: 1992 publication-title: Nature – volume: 30 start-page: 507 year: 2020 publication-title: Cell Res. – volume: 28 start-page: 704 year: 2016 publication-title: Chem. Mater. – volume: 133 start-page: 219 year: 2017 publication-title: Biomaterials – volume: 54 start-page: 1057 year: 2018 publication-title: Chem. Commun. – volume: 20 start-page: 6246 year: 2020 publication-title: Nano Lett. – volume: 131 start-page: 314 year: 2010 publication-title: Microporous Mesoporous Mater. – volume: 239 year: 2020 publication-title: Biomaterials – volume: 175 start-page: 82 year: 2018 publication-title: Biomaterials – volume: 7 start-page: 1825 year: 2019 publication-title: Biomater. Sci. – volume: 16 start-page: 102 year: 2019 publication-title: Appl. Mater. Today – volume: 12 start-page: 3510 year: 2016 publication-title: Small – volume: 36 start-page: 61 year: 2016 publication-title: Comments Inorg. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 56 start-page: 8446 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 5390 year: 2011 publication-title: ACS Nano – volume: 3 start-page: 55 year: 2019 publication-title: Annu. Rev. Cancer Biol. – volume: 121 start-page: 9611 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 4721 year: 2002 publication-title: Chem. Mater. – volume: 28 year: 2012 publication-title: Langmuir – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 79 start-page: 319 year: 2016 publication-title: . – volume: 13 year: 2021 publication-title: Nanoscale – volume: 6 year: 2020 publication-title: Mater. Today Adv. – volume: 53 start-page: 1545 year: 2020 publication-title: Acc. Chem. Res. – volume: 7 start-page: 290 year: 2019 publication-title: Front. Chem. – volume: 26 start-page: 5980 year: 2014 publication-title: Chem. Mater. – volume: 4 start-page: 484 year: 2018 publication-title: ACS Cent. Sci. – volume: 19 start-page: 8409 year: 2019 publication-title: Nano Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 133 start-page: 8102 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 308 year: 2001 publication-title: Chem. Mater. – volume: 27 start-page: 3193 year: 2015 publication-title: Chem. Mater. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 28 start-page: 1963 year: 2016 publication-title: Adv. Mater. – volume: 19 start-page: 290 year: 2021 publication-title: J. Nanobiotechnol. – volume: 135 start-page: 2427 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 435 year: 2014 publication-title: Chem. Mater. – volume: 8 start-page: 1811 year: 2017 publication-title: Nat. Commun. – volume: 43 start-page: 74 year: 2017 publication-title: Semin. Cancer Biol. – volume: 23 start-page: 487 year: 2022 publication-title: Nat. Immunol. – volume: 11 start-page: 3302 year: 1999 publication-title: Chem. Mater. – volume: 256 year: 2020 publication-title: Biomaterials – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 532 year: 2011 publication-title: Chem – volume: 32 start-page: 3696 year: 2021 publication-title: Chin. Chem. Lett. – volume: 7 start-page: 3276 year: 2017 publication-title: Theranostics – volume: 4 start-page: 527 year: 2018 publication-title: ACS Cent. Sci. – volume: 9 start-page: 1609 year: 2021 publication-title: Biomater. Sci. – volume: 27 start-page: 145 year: 2015 publication-title: Adv. Mater. – volume: 3 year: 2020 publication-title: Adv. Ther. – volume: 132 start-page: 60 year: 2010 publication-title: Microporous Mesoporous Mater. – volume: 6 start-page: 4089 year: 2018 publication-title: J. Mater. Chem. B – volume: 46 start-page: 792 year: 2013 publication-title: Acc. Chem. Res. – ident: e_1_2_9_7_1 doi: 10.1021/cm0011559 – ident: e_1_2_9_15_1 doi: 10.1002/smll.201001459 – ident: e_1_2_9_98_1 doi: 10.1186/s12951-021-01073-2 – ident: e_1_2_9_60_1 doi: 10.1002/adhm.201700831 – ident: e_1_2_9_38_1 doi: 10.1002/adhm.201900039 – ident: e_1_2_9_16_1 doi: 10.1038/47229 – ident: e_1_2_9_53_1 doi: 10.1021/cm504448u – ident: e_1_2_9_45_1 doi: 10.1039/D0BM02157A – ident: e_1_2_9_78_1 doi: 10.1002/adfm.201800025 – ident: e_1_2_9_71_1 doi: 10.1021/acs.accounts.0c00280 – ident: e_1_2_9_75_1 doi: 10.1038/s41590-022-01132-2 – ident: e_1_2_9_79_1 doi: 10.1016/j.mattod.2017.06.003 – ident: e_1_2_9_108_1 doi: 10.1016/j.biomaterials.2018.05.025 – ident: e_1_2_9_27_1 doi: 10.1038/s41577-019-0269-6 – ident: e_1_2_9_115_1 doi: 10.1002/adma.201604634 – ident: e_1_2_9_24_1 doi: 10.1016/j.msec.2020.111526 – ident: e_1_2_9_25_1 doi: 10.1016/j.biomaterials.2020.120191 – ident: e_1_2_9_86_1 doi: 10.1016/j.biomaterials.2021.120654 – ident: e_1_2_9_6_1 doi: 10.1002/adfm.201902652 – ident: e_1_2_9_5_1 doi: 10.3390/s22010261 – ident: e_1_2_9_93_1 doi: 10.1021/acsnano.0c05392 – ident: e_1_2_9_46_1 doi: 10.1021/cm011074s – volume: 10 year: 2022 ident: e_1_2_9_36_1 publication-title: Front. Chem. doi: 10.3389/fchem.2022.842682 – ident: e_1_2_9_35_1 doi: 10.1039/C8BM01669K – ident: e_1_2_9_77_1 doi: 10.1038/s41467-017-01651-9 – ident: e_1_2_9_70_1 doi: 10.1038/s41467-019-09158-1 – ident: e_1_2_9_2_1 doi: 10.1038/359710a0 – ident: e_1_2_9_32_1 doi: 10.1038/s41568-019-0186-9 – ident: e_1_2_9_4_1 doi: 10.1021/accountsmr.1c00153 – ident: e_1_2_9_117_1 doi: 10.1016/j.toxlet.2009.04.017 – ident: e_1_2_9_11_1 doi: 10.3390/ijms21228605 – ident: e_1_2_9_23_1 doi: 10.1002/adfm.202002043 – ident: e_1_2_9_82_1 doi: 10.1016/j.apsb.2020.08.013 – ident: e_1_2_9_67_1 doi: 10.1021/cm1017344 – ident: e_1_2_9_76_1 doi: 10.1016/j.colsurfb.2020.111452 – ident: e_1_2_9_61_1 doi: 10.1016/j.jscs.2017.08.005 – ident: e_1_2_9_43_1 doi: 10.1016/j.mser.2019.01.001 – ident: e_1_2_9_83_1 doi: 10.1021/acsami.1c04305 – ident: e_1_2_9_80_1 doi: 10.1002/smll.202101897 – ident: e_1_2_9_59_1 doi: 10.1002/adma.201404226 – ident: e_1_2_9_65_1 doi: 10.1002/anie.202112752 – ident: e_1_2_9_74_1 doi: 10.1021/acscentsci.8b00035 – ident: e_1_2_9_85_1 doi: 10.7150/thno.18460 – ident: e_1_2_9_13_1 doi: 10.1016/j.cclet.2021.06.034 – ident: e_1_2_9_3_1 doi: 10.1039/D1NR04048K – ident: e_1_2_9_109_1 doi: 10.1016/j.mtadv.2020.100069 – ident: e_1_2_9_57_1 doi: 10.1002/cplu.201600560 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.1c00498 – ident: e_1_2_9_102_1 doi: 10.1039/C7CC08222C – ident: e_1_2_9_55_1 doi: 10.1002/smll.201402779 – ident: e_1_2_9_30_1 doi: 10.1002/mco2.6 – ident: e_1_2_9_41_1 doi: 10.1038/s41389-017-0011-9 – ident: e_1_2_9_92_1 doi: 10.1002/adfm.202010637 – ident: e_1_2_9_104_1 doi: 10.1021/acs.nanolett.0c00713 – ident: e_1_2_9_9_1 doi: 10.1002/wnan.1573 – ident: e_1_2_9_88_1 doi: 10.1016/j.biomaterials.2021.120990 – ident: e_1_2_9_17_1 doi: 10.1021/ja9916658 – ident: e_1_2_9_99_1 doi: 10.1002/adma.202008065 – ident: e_1_2_9_123_1 doi: 10.1016/j.micromeso.2009.11.015 – ident: e_1_2_9_21_1 doi: 10.1186/s12951-021-01025-w – ident: e_1_2_9_124_1 doi: 10.1021/ja201779d – ident: e_1_2_9_119_1 doi: 10.1016/j.jconrel.2019.08.028 – ident: e_1_2_9_101_1 doi: 10.1002/smll.201600677 – volume: 79 start-page: 319 year: 2016 ident: e_1_2_9_118_1 publication-title: . – ident: e_1_2_9_94_1 doi: 10.1021/acsami.7b16118 – ident: e_1_2_9_72_1 doi: 10.1126/sciadv.aaz4462 – ident: e_1_2_9_95_1 doi: 10.1021/acsami.9b19446 – ident: e_1_2_9_113_1 doi: 10.1016/j.biomaterials.2017.04.028 – ident: e_1_2_9_110_1 doi: 10.1021/acsnano.0c07071 – ident: e_1_2_9_91_1 doi: 10.1021/acsami.0c10781 – ident: e_1_2_9_97_1 doi: 10.7150/thno.19987 – ident: e_1_2_9_112_1 doi: 10.1002/adma.201505524 – ident: e_1_2_9_116_1 doi: 10.1021/tx300166u – ident: e_1_2_9_19_1 doi: 10.1016/j.biomaterials.2016.03.019 – ident: e_1_2_9_87_1 doi: 10.1039/D0BM01452D – ident: e_1_2_9_29_1 doi: 10.1038/s41422-020-0337-2 – ident: e_1_2_9_105_1 doi: 10.1002/smll.202100006 – ident: e_1_2_9_100_1 doi: 10.1039/D0BM01168A – ident: e_1_2_9_120_1 doi: 10.1016/j.micromeso.2010.01.009 – ident: e_1_2_9_64_1 doi: 10.1021/cm402592t – ident: e_1_2_9_62_1 doi: 10.1038/s41598-017-03834-2 – ident: e_1_2_9_103_1 doi: 10.1002/advs.201901690 – ident: e_1_2_9_106_1 doi: 10.1016/j.biomaterials.2022.121368 – ident: e_1_2_9_54_1 doi: 10.1016/j.jcis.2011.05.038 – ident: e_1_2_9_68_1 doi: 10.1021/cm502777e – ident: e_1_2_9_63_1 doi: 10.1021/ja3116873 – ident: e_1_2_9_28_1 doi: 10.1146/annurev-cancerbio-030518-055552 – ident: e_1_2_9_33_1 doi: 10.1002/adma.202004385 – ident: e_1_2_9_56_1 doi: 10.1016/j.cej.2020.126936 – volume: 47 start-page: 532 year: 2011 ident: e_1_2_9_122_1 publication-title: Chem – ident: e_1_2_9_107_1 doi: 10.1002/anie.201701550 – ident: e_1_2_9_26_1 doi: 10.1016/j.phrs.2020.104742 – ident: e_1_2_9_48_1 doi: 10.1021/cm0204371 – ident: e_1_2_9_114_1 doi: 10.1080/02603594.2015.1088439 – ident: e_1_2_9_18_1 doi: 10.1021/cm9903935 – ident: e_1_2_9_52_1 doi: 10.1021/la302145j – ident: e_1_2_9_44_1 doi: 10.1039/D1CS00659B – ident: e_1_2_9_50_1 doi: 10.1021/acs.chemmater.5b03963 – ident: e_1_2_9_121_1 doi: 10.1016/j.jcis.2018.08.088 – ident: e_1_2_9_51_1 doi: 10.1039/c3cs35405a – ident: e_1_2_9_31_1 doi: 10.1038/s41571-019-0308-z – volume: 22 start-page: 9607 year: 2016 ident: e_1_2_9_20_1 publication-title: Eur. J. Chem. doi: 10.1002/chem.201600587 – ident: e_1_2_9_39_1 doi: 10.1002/anie.201712027 – ident: e_1_2_9_111_1 doi: 10.1021/acsnano.2c03348 – ident: e_1_2_9_10_1 doi: 10.3389/fchem.2019.00290 – ident: e_1_2_9_89_1 doi: 10.1002/adtp.202000130 – ident: e_1_2_9_12_1 doi: 10.3389/fchem.2020.598722 – ident: e_1_2_9_14_1 doi: 10.1002/adma.201104763 – ident: e_1_2_9_22_1 doi: 10.1021/nn200365a – ident: e_1_2_9_40_1 doi: 10.3390/biom10101429 – ident: e_1_2_9_47_1 doi: 10.1039/C8TB00544C – ident: e_1_2_9_81_1 doi: 10.1016/j.apmt.2019.05.006 – ident: e_1_2_9_42_1 doi: 10.1016/j.semcancer.2017.03.001 – ident: e_1_2_9_66_1 doi: 10.1021/ar3000986 – ident: e_1_2_9_73_1 doi: 10.1021/acscentsci.8b00181 – ident: e_1_2_9_58_1 doi: 10.1016/j.biomaterials.2018.01.046 – ident: e_1_2_9_69_1 doi: 10.1016/j.msec.2021.112232 – ident: e_1_2_9_8_1 doi: 10.1016/j.addr.2012.07.018 – ident: e_1_2_9_37_1 doi: 10.1002/anie.201807595 – ident: e_1_2_9_84_1 doi: 10.1021/acs.nanolett.9b02448 – ident: e_1_2_9_49_1 doi: 10.1021/ar200343s – ident: e_1_2_9_90_1 doi: 10.1016/j.biomaterials.2020.119859 – ident: e_1_2_9_96_1 doi: 10.1039/D0SC02803G |
SSID | ssj0002872868 |
Score | 2.4571908 |
SecondaryResourceType | review_article |
Snippet | Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode... Abstract Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the... |
SourceID | doaj proquest pubmed crossref wiley |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20220086 |
SubjectTerms | Cancer Cancer immunotherapy Cancer therapies Drug delivery systems Hydrocarbons Immunotherapy Morphology Nanoparticles Nanotechnology organosilica Pore size Side effects Silica Silicon dioxide Surfactants Synergism Tumor microenvironment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodDL0ufW27S40D0tbuyxZcnHtmRZCik9NJCbkPWALMUJSXrIv--MZJsEdruX3mR7sKRvbM2MHvMx9klY7Z0gjjBoZIYWv85aByIDA9ZbIzkPlCzzH_Xtovq-5Msjqi_aExbTA0fgphU5yKYpjStl5aXQHN-ndQP4tem2MDT6os07CqbuwpSRABnOwYHA6iWaxX7XOz6bzpY_MTIEWvqvT-xRSNt_n6956roG23PznJ33TmP6JTb2BXviupfsaaSRPLxis7nbrdGPxiA-3a1oFm4ayJrW8SLtsLgZdsCl6KWmhnS9TVd0OKQ_gnV4zRY3s1_fbrOeHiEzGNPWOIAa6ytbIaTO6Sr3lXCIC9imlhY0lK7xHnKUqTUCX2jrQXDHWw9E_m3KN-ysW3fuLUsttLWgJcDCo0fVyjY3upA5t5wbSiGYsOsBJGX63OFEYfFbxazHoBBSNUCasKtRehNzZjwg95XwHmUo03W4gRipHhX1mP4TNhm0pfrfb6fKvAGJNVRFwj6Oj_HHodUQ3TnUhwIp64YOJqPMRdTy2JISRy2M3UXCPge1_7MbdDGUL_9Hl96xZ0RqHzekTdjZfvvHvUfXZ99-CF_5XyhI-ek priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDBfrK4NexrZ2W7puZLCeSvYSJY6d01jHK2XQUkoL72Ycf0Ch5L31dYf-95USJ6Ow9RbHOtiSLUuyrB_AV-lM8JIxwrBRGZ34ddZ6lBladMFZJUQPyXJ2Xp9eV7-WYhkDbpuYVjnqxF5Ru5XlGPm8zBtUZH9Xxff174xRo_h2NUJobME2qWClZrB9vDi_uJyiLOQPoOrfw6GkYWDeqJj9Tn3zxfKCPETkFID6ybnUl-__l8351ITtz6CT1_AqGo_pj0Hab-CF797CywFO8mEXFmd-syJ7mpz5dHPD0bh5D9q0GhppR5_rMRMuJWs1tSzzu_SGH4nEp1gPe3B9srj6eZpFmITMkm9bkyK1LlSuItZ6b6o8VNKbBtE1tXJosPRNCJgTTW1IAIVxAaXwog3IIOC2fAezbtX5D5A6bGvJV4FFIMuqVW1uTaFy4YSwXEowgaORSdrGGuIMZXGrh-rHqImlemRpAocT9XqonfEfumPm90TDFa_7H8QjHbmiK3aUbFNaX6oqKGkErStD8yStY9rCJnAwSkvHbbjRfxdNAl-mbtpAfCtiOk_y0LRs6oYfKBPN-0HK00hK0l7kw8sEvvVif3Ya3Bi_958fzUfYYdj6IeXsAGb3d3_8JzJu7tvPcQU_AukW83Y priority: 102 providerName: ProQuest |
Title | Mesoporous silica/organosilica nanoparticles for cancer immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20220086 https://www.ncbi.nlm.nih.gov/pubmed/37933387 https://www.proquest.com/docview/3092808641 https://www.proquest.com/docview/2886939351 https://doaj.org/article/46428c93ce384f87a5166aa92042ab1c |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LatwwcGgTCr2UJn25TRYX2lMxa48lSz42ZUMIJCylgb0JWQ8IFG_Ipof8fWfkRxtoC71J1tiWZiTNQ5oZgA_K2xgU5wjDVhfE8ZuiC6gKdOijd1rKlJLl4rI5uxLnG7kZDW7sCzPEh5gNbrwy0n7NC9x2u-WvoKGrzZrUO-Tz--Yx7LN3LV_pQ7GebSykDaBO3nCoqBOamON4953alr9_4AFXSsH7_yRxPhRgEwc6fQ7PRtEx_zzQ-gAehf4QngzJJO9fwOoi7LYkTZMqn--u2Ra3TCmbtkMl76l4M92Dy0lWzR1T_Da_ZheR0RHr_iVcna6-fTkrxiQJhSPNtqFt1PkovCDEhmBFGYUKtkX0baM9WqxDGyOWBNNYQn9lfUQlg-wicgpwV7-CvX7bhzeQe-waxQeBVSS5qtNd6WylS-mldBxIMINPE5KMGyOIcyKL72aIfYyGUGomlGbwcYa-GSJn_AXuhPE9w3C86_SAcGRGrBjBapJraxdqLaJWVtKssjRO2nNsV7kMjiZqmXER7kxdtqjpD6LK4P3cTMuHz0RsH4geBrVuWnZPJpjXA5XnntS0d5EGrzIYJuI_h8GVqfz2f194B085jf1wBe0I9u5uf4RjEnbuukWa0QvYP1ldrr8ukslgkWxSPwGSS_bo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYJETyhsMnYS54AQha22tLuqUCvtzTh-SJVQsjSt0P4pfiPjvFAl6K23PCaRPTMez9gz_gDe5kY5m3uMMCxERDN-FpUW8wg1Gme0SNMWkmWxzOan_OsqXW3B76EWxqdVDjaxNdSm1n6NfMriAgX53zz5uP4ZedQov7s6QGh0anFoN78oZGs-HHwh-e4i7s9OPs-jHlUg0hQKZmR3tHHccGqJtYrHjudWFYimyIRBhcwWzmFMNJmi9ibKOMxTm5YOPWa2ZvTfW7DNWRbjBLb3Zsvjb-OqDsUfKNr6O8yp2xgXos-2p3fT2eqYIlL0KQfZlXmwhQv4l4971WVu57z9-3Cvd1bDT512PYAtWz2E2x185eYRzBa2qcl_ry-bsDnzq3_TFiSq7m7Cii7XQ-ZdSN5xqL2OnYdnviilL_3aPIbTG2HgE5hUdWWfQWiwzHK_9Zg48uRKUcZaJSJOTZpqf3RhAO8GJkndn1nuoTN-yO60ZZTEUjmwNIDdkXrdndXxH7o9z--Rxp-w3T4gHsmeK5L7wEwXTFsmuBO5SkmPFfWTrJwqEx3AziAt2Q_7Rv5V0gDejK9pwPpdGFVZkodEIbLCF0QTzdNOymNLGFlLxkQewPtW7Nd2w98M18-vb81ruDM_WRzJo4Pl4Qu4S1-xLt1tByYX55f2JTlWF-WrXptD-H7TA-gPOqcyTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LjtQwzIJFIC6IN4UFigQnVE3rJk165DGj5bGrObDS3KI0D2kl1BntLIf9e-ymLawESNySxm0TO4kfiW2A18rbGBTnCMNWF8Txm6ILqAp06KN3WsohJcvxSXN0Kj5v5GY0uLEvTIoPMRvceGUM-zUv8J2Pi19BQ5ebNal3yOf3zXW4wed9fKULxXq2sZA2gHrwhkNFndDEHMe779S2-P0DV7jSELz_TxLnVQF24ECru3BnFB3zd4nW9-Ba6O_DzZRM8vIBLI_DfkvSNKny-f6MbXGLIWXTNlXynoq76R5cTrJq7pji5_kZu4iMjliXD-F0tfz24agYkyQUjjTbhrZR56PwghAbghVlFCrYFtG3jfZosQ5tjFgSTGMJ_ZX1EZUMsovIKcBd_QgO-m0fnkDusWsUHwRWkeSqTnels5UupZfScSDBDN5OSDJujCDOiSy-mxT7GA2h1EwozeDNDL1LkTP-Avee8T3DcLzr4QHhyIxYMYLVJNfWLtRaRK2spFllaZy059iuchkcTtQy4yLcm7psUdMfRJXBq7mZlg-fidg-ED0Mat207J5MMI8Tleee1LR3kQavMkgT8Z_D4MpUfvq_L7yEW-uPK_P108mXZ3CbM9qn22iHcHBx_iM8J7nnonsxTO6fKhX15w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+silica%2Forganosilica+nanoparticles+for+cancer+immunotherapy&rft.jtitle=Exploration+%28Beijing%2C+China%29&rft.au=Theivendran%2C+Shevanuja&rft.au=Lazarev%2C+Sergei&rft.au=Yu%2C+Chengzhong&rft.date=2023-06-01&rft.issn=2766-2098&rft.eissn=2766-2098&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1002%2FEXP.20220086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_EXP_20220086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2766-8509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2766-8509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2766-8509&client=summon |