Crystal structures of the psychrophilic α‐amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor

Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the crystal structures of the α‐amylase (AHA) secreted by this bacterium, in its native state to 2.0 Å resolution as well as in complex with Tris to 1.85...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 7; no. 3; pp. 564 - 572
Main Authors Aghajari, Nushin, Haser, Richard, Feller, Georges, Gerday, Charles
Format Journal Article
LanguageEnglish
Published Bristol Cold Spring Harbor Laboratory Press 01.03.1998
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the crystal structures of the α‐amylase (AHA) secreted by this bacterium, in its native state to 2.0 Å resolution as well as in complex with Tris to 1.85 Å resolution. The structure of AHA, which is the first experimentally determined three‐dimensional structure of a psychrophilic enzyme, resembles those of other known α‐amylases of various origins with a surprisingly greatest similarity to mammalian α‐amylases. AHA contains a chlorideion which activates the hydrolytic cleavage of substrate α‐l,4‐glycosidic bonds. The chloride binding site is situated ∼5 Å from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation.A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine‐protease like catalytic triads was found ∼22 Å from the active site. We found that this triad is equally present in other chloride dependent α‐amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted α‐amylase.
AbstractList Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.
Abstract Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the crystal structures of the α‐amylase (AHA) secreted by this bacterium, in its native state to 2.0 Å resolution as well as in complex with Tris to 1.85 Å resolution. The structure of AHA, which is the first experimentally determined three‐dimensional structure of a psychrophilic enzyme, resembles those of other known α‐amylases of various origins with a surprisingly greatest similarity to mammalian α‐amylases. AHA contains a chlorideion which activates the hydrolytic cleavage of substrate α‐l,4‐glycosidic bonds. The chloride binding site is situated ∼5 Å from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation.A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine‐protease like catalytic triads was found ∼22 Å from the active site. We found that this triad is equally present in other chloride dependent α‐amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted α‐amylase.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the crystal structures of the α‐amylase (AHA) secreted by this bacterium, in its native state to 2.0 Å resolution as well as in complex with Tris to 1.85 Å resolution. The structure of AHA, which is the first experimentally determined three‐dimensional structure of a psychrophilic enzyme, resembles those of other known α‐amylases of various origins with a surprisingly greatest similarity to mammalian α‐amylases. AHA contains a chlorideion which activates the hydrolytic cleavage of substrate α‐l,4‐glycosidic bonds. The chloride binding site is situated ∼5 Å from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation.A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine‐protease like catalytic triads was found ∼22 Å from the active site. We found that this triad is equally present in other chloride dependent α‐amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted α‐amylase.
Author Feller, Georges
Aghajari, Nushin
Gerday, Charles
Haser, Richard
AuthorAffiliation Laboratoire d'Architecture et Fonction des Macromolécules Biologiques, UPR9039, Institut de Biologie Structurale et Microbiologie, IFR1, CNRS, Marseille, France
AuthorAffiliation_xml – name: Laboratoire d'Architecture et Fonction des Macromolécules Biologiques, UPR9039, Institut de Biologie Structurale et Microbiologie, IFR1, CNRS, Marseille, France
Author_xml – sequence: 1
  givenname: Nushin
  surname: Aghajari
  fullname: Aghajari, Nushin
– sequence: 2
  givenname: Richard
  surname: Haser
  fullname: Haser, Richard
  email: r.haser@ibcp.fr
– sequence: 3
  givenname: Georges
  surname: Feller
  fullname: Feller, Georges
– sequence: 4
  givenname: Charles
  surname: Gerday
  fullname: Gerday, Charles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9541387$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00313564$$DView record in HAL
BookMark eNqFkcGKFDEQhoOsrLOrV29CToKHHpNOuju5CMOwusLAiih4C-lMtR1Jd9okPevcvHj3VXwRH8InMcsM6-rFU5H6__pC1X-GTkY_AkKPKVlSQsrnU_DLqqoJaQgj_B5aUF7LQsj6wwlaEFnTQrBaPEBnMX4ihHBaslN0KitOmWgW6Ns67GPSDscUZpPmABH7Dqce8BT3pg9-6q2zBv_88evrdz3snY6Au-AHvHIJcvWjjrjXzk9OjybZiO2IbYp41MnusteHAetxi40fJgdfYIuvbepzKxt729rkw0N0v9MuwqNjPUfvX168W18Wm6tXr9erTWHyUrxooa11zTuhS1Yz0ooOuDZgSNcaCm1pOLCaNrKsREcYE9W2FUDzbUTHRVMydo5eHLjT3A6wNTCmoJ2agh102CuvrfpbGW2vPvqdKilnkssMeHYA9P-MXa426qZHCKOsqvmOZu_T42fBf54hJjXYaMDlM4Gfo2pkI8pGimxcHowm-BgDdLdkStRNyPnt1Z-Q88CTu2vc2o-pZl0e9GvrYP8fmnrz9uoO-zf-urrz
CitedBy_id crossref_primary_10_1074_jbc_M207253200
crossref_primary_10_1016_j_abb_2003_10_007
crossref_primary_10_1016_S0969_2126_98_00066_5
crossref_primary_10_1016_S1570_9639_03_00184_5
crossref_primary_10_1016_S1381_1177_00_00214_9
crossref_primary_10_1074_jbc_M111_274423
crossref_primary_10_1002_prot_10264
crossref_primary_10_1074_jbc_M211339200
crossref_primary_10_3390_molecules26185704
crossref_primary_10_3390_molecules26071932
crossref_primary_10_1046_j_1432_1327_1999_00664_x
crossref_primary_10_1046_j_1432_1327_2000_01098_x
crossref_primary_10_3390_molecules28145327
crossref_primary_10_1046_j_1432_1327_2000_01094_x
crossref_primary_10_1093_protein_gzt064
crossref_primary_10_1093_jisesa_ieu144
crossref_primary_10_1107_S0907444912045532
crossref_primary_10_1007_s12010_009_8735_4
crossref_primary_10_1016_j_femsre_2003_07_003
crossref_primary_10_1128_JB_187_17_6206_6212_2005
crossref_primary_10_1111_j_1742_4658_2007_05988_x
crossref_primary_10_1016_S0167_4838_00_00237_5
crossref_primary_10_1046_j_1432_1033_2002_03259_x
crossref_primary_10_3390_molecules25215073
crossref_primary_10_1139_w99_021
crossref_primary_10_1002_prot_20773
crossref_primary_10_1039_c2mb25192b
crossref_primary_10_1042_BJ20112113
crossref_primary_10_1016_j_jmb_2006_03_004
crossref_primary_10_1046_j_1432_1327_1999_00205_x
crossref_primary_10_1046_j_1432_1033_2002_03185_x
crossref_primary_10_1074_jbc_M406804200
crossref_primary_10_1093_protein_13_10_711
crossref_primary_10_3923_biotech_2011_246_258
crossref_primary_10_1016_S0022_2836_02_01091_4
crossref_primary_10_1016_S1367_5931_99_80008_8
crossref_primary_10_1155_2023_4341218
crossref_primary_10_1107_S2059798319007113
crossref_primary_10_1016_S0167_4838_00_00018_2
crossref_primary_10_1074_jbc_273_20_12109
crossref_primary_10_1016_j_ijbiomac_2020_09_103
crossref_primary_10_1080_07391102_2007_10507134
crossref_primary_10_1016_S0167_4838_00_00302_2
crossref_primary_10_1007_s00792_014_0674_5
crossref_primary_10_1128_AEM_07514_11
crossref_primary_10_1080_07391102_2020_1745282
crossref_primary_10_1002_prot_21594
crossref_primary_10_1016_j_enzmictec_2006_07_009
crossref_primary_10_1016_S0167_4838_00_00041_8
crossref_primary_10_1093_protein_14_9_655
crossref_primary_10_1111_j_1574_6968_2006_00193_x
crossref_primary_10_1042_EBC20220193
crossref_primary_10_1155_2013_512840
crossref_primary_10_1007_s12010_023_04810_5
crossref_primary_10_1046_j_1432_1033_2003_03404_x
crossref_primary_10_3389_fmicb_2016_01129
crossref_primary_10_1016_S0167_7799_99_01413_4
crossref_primary_10_1155_2022_2401766
crossref_primary_10_3390_ijms130911643
crossref_primary_10_1093_oxfordjournals_molbev_a003718
crossref_primary_10_1016_S0305_0491_00_00216_9
crossref_primary_10_1111_j_1574_6968_2000_tb09377_x
crossref_primary_10_1110_ps_0202602
crossref_primary_10_1016_S1389_1723_04_00290_7
crossref_primary_10_1016_j_phytochem_2007_04_006
crossref_primary_10_1002_bip_20096
crossref_primary_10_1007_s10930_015_9623_0
crossref_primary_10_1007_s00018_013_1388_z
crossref_primary_10_1016_j_ijbiomac_2019_10_004
crossref_primary_10_1016_j_polar_2019_04_003
crossref_primary_10_5483_BMBRep_2007_40_3_315
crossref_primary_10_1002_jobm_200800008
crossref_primary_10_1007_s11274_009_0295_9
crossref_primary_10_1046_j_0014_2956_2001_02432_x
crossref_primary_10_1016_j_bbagen_2005_03_004
crossref_primary_10_1186_2193_1801_3_280
crossref_primary_10_1016_S0378_1119_00_00229_8
crossref_primary_10_1371_journal_pone_0024214
crossref_primary_10_1016_j_jmb_2008_05_046
crossref_primary_10_1016_j_jmb_2008_03_016
crossref_primary_10_1002_arch_20099
crossref_primary_10_1016_S1381_1177_03_00103_6
crossref_primary_10_1002_star_201200078
crossref_primary_10_1099_ijs_0_02182_0
crossref_primary_10_1515_amylase_2020_0001
crossref_primary_10_1046_j_1432_1033_2002_02895_x
crossref_primary_10_1515_amylase_2020_0002
crossref_primary_10_1016_j_heliyon_2024_e34135
crossref_primary_10_1110_ps_041079305
crossref_primary_10_1186_1475_2859_5_40
crossref_primary_10_1002__SICI_1097_0282_199901_49_1_107__AID_BIP10_3_0_CO_2_S
crossref_primary_10_1128_JB_187_17_6197_6205_2005
crossref_primary_10_1016_j_chemosphere_2020_126202
crossref_primary_10_1074_jbc_M104432200
crossref_primary_10_3390_ijms22010036
crossref_primary_10_1016_j_jmb_2003_07_014
crossref_primary_10_1111_j_1432_1033_2004_04182_x
crossref_primary_10_1098_rstb_2002_1105
crossref_primary_10_1099_mic_0_071084_0
crossref_primary_10_1016_S0014_5793_98_01375_1
crossref_primary_10_1126_sciadv_adi0963
crossref_primary_10_4137_IJIS_S3384
crossref_primary_10_1016_S0167_4838_00_00240_5
crossref_primary_10_3390_pharmaceutics13111818
crossref_primary_10_1080_09583157_2016_1218441
crossref_primary_10_3390_pr10040780
crossref_primary_10_1074_jbc_M312825200
crossref_primary_10_1002_2211_5463_12097
crossref_primary_10_2478_s11756_013_0290_3
crossref_primary_10_1007_s00253_010_2882_y
crossref_primary_10_1074_jbc_M102741200
crossref_primary_10_1016_S0969_2126_98_00149_X
crossref_primary_10_1002_bip_20866
crossref_primary_10_1016_S0969_2126_03_00151_5
crossref_primary_10_1021_jp900790n
crossref_primary_10_1007_s13213_010_0090_8
crossref_primary_10_1071_EN05093
crossref_primary_10_1021_acs_jafc_3c01898
crossref_primary_10_1128_JB_183_5_1773_1779_2001
crossref_primary_10_1002_prot_20989
crossref_primary_10_1128_JB_01755_08
crossref_primary_10_2174_1389202921666200401105908
crossref_primary_10_3390_separations11070199
crossref_primary_10_1007_s10126_010_9360_5
crossref_primary_10_1007_s10930_010_9290_0
crossref_primary_10_1016_j_bbadva_2023_100104
crossref_primary_10_1016_j_procbio_2004_09_016
crossref_primary_10_1016_j_bbrc_2023_05_071
crossref_primary_10_1016_j_jmb_2005_08_028
crossref_primary_10_1016_j_bpc_2008_07_007
crossref_primary_10_1074_jbc_M704515200
crossref_primary_10_2187_bss_14_353
crossref_primary_10_1038_srep44067
Cites_doi 10.1006/jmbi.1994.1633
10.1107/S0108767393007597
10.1038/343694a0
10.1038/355472a0
10.1107/S0907444995014119
10.1111/j.1574-6976.1996.tb00236.x
10.1111/j.1432-1033.1974.tb03257.x
10.1016/S0021-9258(18)41554-2
10.1093/oxfordjournals.jbchem.a134659
10.3109/10409238909082556
10.1074/jbc.271.12.6889
10.1016/0959-440X(91)90172-P
10.1074/jbc.271.39.23836
10.1021/bi00482a025
10.1021/bi00007a018
10.1016/S0300-9629(97)00011-X
10.1006/jmbi.1993.1326
10.1107/S0108767391001071
10.1111/j.1432-1033.1969.tb19628.x
10.1021/bi00478a019
10.1111/j.1432-1033.1994.00519.x
10.1016/S0021-9258(18)42754-8
10.1006/jmbi.1998.1683
10.1016/S0021-9258(18)61853-8
10.1038/351761a0
10.1006/jmbi.1994.0106
10.1002/j.1460-2075.1987.tb02731.x
10.1006/jmbi.1994.1354
10.1107/S0108768191001970
10.1107/S0108767390002355
10.1021/bi00186a031
10.1021/bi963189t
10.1016/0005-2744(67)90083-6
10.1042/bj2470715
10.1016/0168-1656(93)90038-O
10.1002/pro.5560040908
10.1006/jmbi.1994.1107
10.1107/S0108768191001908
10.1002/pro.5560051021
10.1111/j.1432-1033.1994.tb18883.x
10.1016/S0969-2126(01)00220-9
10.1111/j.1469-185X.1953.tb01386.x
10.1126/science.235.4787.458
ContentType Journal Article
Copyright Copyright © 1998 The Protein Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 1998 The Protein Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
1XC
5PM
DOI 10.1002/pro.5560070304
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 572
ExternalDocumentID oai_HAL_hal_00313564v1
10_1002_pro_5560070304
9541387
PRO5560070304
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Human Capital and Mobility Network
  funderid: CHRX‐CT94‐0521
– fundername: Centre National de la Recherche Scientifique
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
ACXME
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
1XC
5PM
ID FETCH-LOGICAL-c4694-beb6a64f8a23630b8fe4acec0fbc1eb2c4e36179258f03385db8e16008f487233
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:12:11 EDT 2024
Fri Sep 06 12:38:46 EDT 2024
Fri Aug 16 21:48:44 EDT 2024
Fri Aug 23 01:55:06 EDT 2024
Thu May 23 23:02:39 EDT 2024
Sat Aug 24 00:54:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4694-beb6a64f8a23630b8fe4acec0fbc1eb2c4e36179258f03385db8e16008f487233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2245-2679
OpenAccessLink https://orbi.uliege.be/bitstream/2268/17057/1/ProtSCI_98_AHA.pdf
PMID 9541387
PQID 79782798
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143949
hal_primary_oai_HAL_hal_00313564v1
proquest_miscellaneous_79782798
crossref_primary_10_1002_pro_5560070304
pubmed_primary_9541387
wiley_primary_10_1002_pro_5560070304_PRO5560070304
PublicationCentury 1900
PublicationDate March 1998
PublicationDateYYYYMMDD 1998-03-01
PublicationDate_xml – month: 03
  year: 1998
  text: March 1998
PublicationDecade 1990
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 1998
Publisher Cold Spring Harbor Laboratory Press
Wiley
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Wiley
References 1965; 30
1991; 351
1991; 1
1993; 29
1994; 235
1991; B47
1987; 247
1996b; 18
1992; 267
1995; 34
1987; 6
1998
1971; 246
1993
1991
1990; 343
1997; 118A
1993; 268
1995; 4
1994; 239
1989; 24
1995; 3
1994; D50
1994; A50
1994; 222
1984; 95
1994; 243
1996; D52
1994; 224
1953; 28
1974; 41
1987; 235
1990; 29
1992; 355
1997; 36
1969; 7
1967; 146
1990; A446
1996; 271
1994; 33
1991; A47
1995; 246
1996a; 271
1996; 5
1993; 231
2207069 - Biochemistry. 1990 Jul 3;29(26):6244-9
7932732 - J Mol Biol. 1994 Oct 14;243(1):100-15
7925367 - Eur J Biochem. 1994 Sep 1;224(2):519-24
8107092 - J Mol Biol. 1994 Feb 4;235(5):1560-84
5096086 - J Biol Chem. 1971 Sep 25;246(18):5621-35
1930834 - Acta Crystallogr B. 1991 Aug 1;47 ( Pt 4):527-35
Protein Sci 1998 Jun;7(6):1481
4856205 - Eur J Biochem. 1974 Jan 3;41(1):171-80
8535779 - Structure. 1995 Sep 15;3(9):853-9
2206482 - Acta Crystallogr A. 1990 Jul 1;46 ( Pt 7):585-93
7901200 - J Biol Chem. 1993 Oct 25;268(30):22480-4
1544904 - J Biol Chem. 1992 Mar 15;267(8):5217-21
3502087 - EMBO J. 1987 Dec 20;6(13):3909-16
6060461 - Biochim Biophys Acta. 1967 Sep 12;146(1):167-72
3426558 - Biochem J. 1987 Nov 1;247(3):715-24
17810339 - Science. 1987 Jan 23;235(4787):458-60
8636115 - J Biol Chem. 1996 Mar 22;271(12):6889-94
8020481 - Eur J Biochem. 1994 Jun 1;222(2):441-7
8798613 - J Biol Chem. 1996 Sep 27;271(39):23836-41
8196040 - J Mol Biol. 1994 May 27;239(1):104-21
8897615 - Protein Sci. 1996 Oct;5(10):2128-9
8515451 - J Mol Biol. 1993 Jun 5;231(3):785-99
7857935 - Biochemistry. 1995 Feb 21;34(7):2234-40
1930835 - Acta Crystallogr B. 1991 Aug 1;47 ( Pt 4):535-44
2304545 - Nature. 1990 Feb 22;343(6260):694-5
8528071 - Protein Sci. 1995 Sep;4(9):1730-42
5791586 - Eur J Biochem. 1969 Jan;7(3):434-41
2548811 - Crit Rev Biochem Mol Biol. 1989;24(4):329-418
8193143 - Biochemistry. 1994 May 24;33(20):6284-94
2223766 - Biochemistry. 1990 Jul 31;29(30):7119-23
2062369 - Nature. 1991 Jun 27;351(6329):761-4
7877175 - J Mol Biol. 1995 Mar 3;246(4):545-59
15299664 - Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435-46
9184139 - Biochemistry. 1997 Jun 3;36(22):6597-604
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
(e_1_2_1_12_1) 1994; 50
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Minor W. (e_1_2_1_35_1) 1993
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
Otwinowski Z. (e_1_2_1_38_1) 1993
e_1_2_1_21_1
Roussel A (e_1_2_1_42_1) 1991
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Myrback K. (e_1_2_1_36_1) 1965; 30
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 224
  start-page: 519
  year: 1994
  end-page: 524
  article-title: Sequence similarities and evolutionary relationships of microbial, plant and animal α‐amylases
  publication-title: Eur J Biochem
– volume: 95
  start-page: 697
  year: 1984
  end-page: 702
  article-title: Structure and possible catalytic residues of Taka‐amylase A
  publication-title: J Biochem
– volume: A50
  start-page: 157
  year: 1994
  end-page: 163
  article-title: AMoRe: An automated package for molecular replacement
  publication-title: Acta Crystallogr
– start-page: 86
  year: 1991
– volume: 1
  start-page: 723
  year: 1991
  end-page: 740
  article-title: Atomic features of protein‐carbohydrate interactions
  publication-title: Curr Opin Struct Biol
– volume: A47
  start-page: 392
  year: 1991
  end-page: 400
  article-title: Accurate bond and angle parameters for X‐ray protein structure refinement
  publication-title: Acta Crystallogr
– volume: 28
  start-page: 416
  year: 1953
  end-page: 436
  article-title: Stereochemistry and the mechanism of enzymatic reactions
  publication-title: Biol Rev
– volume: 30
  start-page: 315
  year: 1965
  end-page: 320
  article-title: Studies on yeast β‐fructofuranosidase (invertase) XVII.Inhibition by 2‐amino‐2‐hydroxymethylpropan‐l,3‐diol
  publication-title: Arkiv fur kemi.
– volume: 118A
  start-page: 495
  year: 1997
  end-page: 499
  article-title: Molecular adaptations of enzymes from psychrophilic organisms
  publication-title: Comp Biochem Physiol
– volume: 246
  start-page: 545
  year: 1995
  end-page: 559
  article-title: Crystal structure of calcium‐depleted α‐amylase at 2.2 Å resolution
  publication-title: J Mol Biol
– volume: 33
  start-page: 6284
  year: 1994
  end-page: 6294
  article-title: The active center of a mammalian α‐amylase. Structure of the complex of a pancreatic α‐amylase with a carbohydrate inhibitor refined to 2.2‐Å resolution
  publication-title: Biochemistry
– volume: 351
  start-page: 761
  year: 1991
  end-page: 764
  article-title: Ser‐His‐Glu triad forms the catalytic site of the lipase from Geotrichum candidum
  publication-title: Nature
– volume: 246
  start-page: 5621
  year: 1971
  end-page: 5635
  article-title: Subsite mapping of enzymes
  publication-title: J Biol Chem
– volume: 24
  start-page: 329
  year: 1989
  end-page: 418
  article-title: Microbial amylolytic enzymes
  publication-title: Crit Rev Biochem Mol Biol
– volume: 231
  start-page: 785
  year: 1993
  end-page: 799
  article-title: Structure and molecular model refinement of pig pancreatic α‐amylase at 2.1 Å resolution
  publication-title: J Mol Biol
– volume: B47
  start-page: 535
  year: 1991
  end-page: 544
  article-title: Structure and molecular model refinement of (TAKA) α‐amylase: An application of the simulated‐annealing method
  publication-title: Acta Crystallogr
– start-page: 56
  year: 1993
  end-page: 62
– volume: 247
  start-page: 715
  year: 1987
  end-page: 724
  article-title: Rat intestinal trehalase. Studies of the active site
  publication-title: Biochem J
– volume: 7
  start-page: 434
  year: 1969
  end-page: 441
  article-title: Partial purification and properties of an induced β‐D‐xylosidase of 12
  publication-title: Eur J Biochem
– volume: 34
  start-page: 2234
  year: 1995
  end-page: 2240
  article-title: X‐ray structure of cyclodextrin glycosyl transferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases
  publication-title: Biochemistry
– volume: 6
  start-page: 3909
  year: 1987
  end-page: 3916
  article-title: Three‐dimensional structure of porcine pancreatic α‐amylase at 2.9 Å resolution. Role of calcium ion in structure and activity
  publication-title: EMBO J
– volume: 235
  start-page: 458
  year: 1987
  end-page: 460
  article-title: Crystallographic R factor refinement by molecular dynamics
  publication-title: Science
– year: 1998
– volume: 222
  start-page: 441
  year: 1994
  end-page: 447
  article-title: Stability and structure analysis of α‐amylase from the antarctic psychrophile A23
  publication-title: Eur J Biochem
– volume: A446
  start-page: 585
  year: 1990
  end-page: 593
  publication-title: Acta Crystallogr
– volume: 267
  start-page: 5217
  year: 1992
  end-page: 5221
  article-title: Purification, characterization and nucleotide sequence of the thermolabile α‐amylase from the Antarctic psychrotroph A23
  publication-title: J Biol Chem
– volume: 4
  start-page: 1730
  year: 1995
  end-page: 1742
  article-title: The structure of human pancreatic α‐arnylase at 1.8 α resolution and comparison with related enzymes
  publication-title: Protein Sci
– volume: 5
  start-page: 2128
  year: 1996
  end-page: 2129
  article-title: Crystallization and preliminary X‐ray diffraction studies of α‐amylase from the antarctic psychrophile A23
  publication-title: Protein Sci
– volume: 271
  start-page: 23836
  year: 1996a
  end-page: 23841
  article-title: Structural and functional aspects of chloride binding to α‐amylase
  publication-title: J Biol Chem
– volume: 29
  start-page: 6244
  year: 1990
  end-page: 6249
  article-title: Calcium binding in α‐amylases: An X‐ray diffraction study at 2.1 Å resolution of two enzymes from Aspergillus
  publication-title: Biochemistry
– volume: 146
  start-page: 167
  year: 1967
  end-page: 172
  article-title: Inhibition of barley malt α‐glucosidase by Tris(hydroxymethyl)aminomethane and erythritol
  publication-title: Biochim Biophys Acta
– volume: 235
  start-page: 1560
  year: 1994
  end-page: 1584
  article-title: Refined molecular structure of pig pancreatic α‐amylase at 2.1 Å resolution
  publication-title: J Mol Biol
– volume: 268
  start-page: 22480
  year: 1993
  end-page: 22484
  article-title: Site‐directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, hisudtne 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α‐amylase 1
  publication-title: J Biol Chem
– volume: 343
  start-page: 694
  year: 1990
  end-page: 695
  article-title: More of the catalytic triad
  publication-title: Nature
– volume: 271
  start-page: 6889
  year: 1996
  end-page: 6894
  article-title: Unequivocal identification of Asp‐214 as the catalytic nucleophile of α‐glucosidase using 5‐fluoro glycosyl fluorides
  publication-title: J Biol Chem
– volume: D52
  start-page: 435
  year: 1996
  end-page: 446
  article-title: Structure of human salivary α‐amylase at 1.6 α resolution: Implications for its role in the oral cavity
  publication-title: Acta Crystallogr
– volume: 29
  start-page: 7119
  year: 1990
  end-page: 7123
  article-title: Substrate‐dependent shift of optimum pH in porcine pancreatic α‐amylase‐catalyzed reactions
  publication-title: Biochemistry
– volume: B47
  start-page: 527
  year: 1991
  end-page: 535
  article-title: Solution of the structure of acid α‐amylase by combined molecular replacement and multiple isomorphous replacement methods
  publication-title: Acta Crystallogr
– volume: 18
  start-page: 189
  year: 1996b
  end-page: 202
  article-title: Enzymes from psychrophilic organisms
  publication-title: FEMS Microbiol Rev
– volume: D50
  start-page: 760
  year: 1994
  end-page: 763
  article-title: The CCP4 suite: Programs for protein crystallography
  publication-title: Acta Crystallogr
– volume: 239
  start-page: 104
  year: 1994
  end-page: 121
  article-title: Crystal and molecular structure of barley α‐amylase
  publication-title: J Mol Biot
– volume: 36
  start-page: 6597
  year: 1997
  end-page: 6604
  article-title: The crystallographic structure of the subtilisin protease from
  publication-title: Biochemistry
– volume: 355
  start-page: 472
  year: 1992
  end-page: 474
  article-title: The free R‐value: A novel statistical quantity for assessing the accuracy of crystal structures
  publication-title: Nature
– volume: 29
  start-page: 1
  year: 1993
  end-page: 37
  article-title: Mutational analysis of glycosilase function
  publication-title: J Biotechnol
– volume: 243
  start-page: 100
  year: 1994
  end-page: 115
  article-title: Protein hydration observed by X‐ray diffraction: Solvation properties of penicillopepsion and neuraminidase crystal structures
  publication-title: J Mol Biol
– volume: 41
  start-page: 171
  year: 1974
  end-page: 180
  article-title: The allosteric activation of mammalian α‐amylase by chloride
  publication-title: Eur J Biochem
– year: 1993
– volume: 3
  start-page: 853
  year: 1995
  end-page: 859
  article-title: Structures and mechanisms of glycosyl hydrolases
  publication-title: Structure
– ident: e_1_2_1_22_1
  doi: 10.1006/jmbi.1994.1633
– volume-title: XDISPLAYF program
  year: 1993
  ident: e_1_2_1_35_1
  contributor:
    fullname: Minor W.
– ident: e_1_2_1_37_1
  doi: 10.1107/S0108767393007597
– ident: e_1_2_1_3_1
  doi: 10.1038/343694a0
– ident: e_1_2_1_7_1
  doi: 10.1038/355472a0
– start-page: 86
  volume-title: Silicon graphics geometry partners directory
  year: 1991
  ident: e_1_2_1_42_1
  contributor:
    fullname: Roussel A
– ident: e_1_2_1_41_1
  doi: 10.1107/S0907444995014119
– volume: 50
  start-page: 760
  year: 1994
  ident: e_1_2_1_12_1
  article-title: The CCP4 suite: Programs for protein crystallography
  publication-title: Acta Crystallogr
– ident: e_1_2_1_18_1
  doi: 10.1111/j.1574-6976.1996.tb00236.x
– ident: e_1_2_1_31_1
  doi: 10.1111/j.1432-1033.1974.tb03257.x
– ident: e_1_2_1_44_1
  doi: 10.1016/S0021-9258(18)41554-2
– start-page: 56
  volume-title: Proceedings of the CCP4 study weekend: Data collection and processing
  year: 1993
  ident: e_1_2_1_38_1
  contributor:
    fullname: Otwinowski Z.
– ident: e_1_2_1_33_1
  doi: 10.1093/oxfordjournals.jbchem.a134659
– ident: e_1_2_1_49_1
  doi: 10.3109/10409238909082556
– ident: e_1_2_1_34_1
  doi: 10.1074/jbc.271.12.6889
– ident: e_1_2_1_50_1
  doi: 10.1016/0959-440X(91)90172-P
– ident: e_1_2_1_16_1
  doi: 10.1074/jbc.271.39.23836
– ident: e_1_2_1_20_1
  doi: 10.1021/bi00482a025
– ident: e_1_2_1_45_1
  doi: 10.1021/bi00007a018
– ident: e_1_2_1_15_1
  doi: 10.1016/S0300-9629(97)00011-X
– ident: e_1_2_1_40_1
  doi: 10.1006/jmbi.1993.1326
– ident: e_1_2_1_14_1
  doi: 10.1107/S0108767391001071
– ident: e_1_2_1_27_1
  doi: 10.1111/j.1432-1033.1969.tb19628.x
– ident: e_1_2_1_4_1
  doi: 10.1021/bi00478a019
– ident: e_1_2_1_21_1
  doi: 10.1111/j.1432-1033.1994.00519.x
– ident: e_1_2_1_17_1
  doi: 10.1016/S0021-9258(18)42754-8
– ident: e_1_2_1_26_1
  doi: 10.1006/jmbi.1998.1683
– ident: e_1_2_1_48_1
  doi: 10.1016/S0021-9258(18)61853-8
– ident: e_1_2_1_43_1
  doi: 10.1038/351761a0
– ident: e_1_2_1_32_1
  doi: 10.1006/jmbi.1994.0106
– ident: e_1_2_1_10_1
  doi: 10.1002/j.1460-2075.1987.tb02731.x
– ident: e_1_2_1_25_1
  doi: 10.1006/jmbi.1994.1354
– ident: e_1_2_1_47_1
  doi: 10.1107/S0108768191001970
– ident: e_1_2_1_24_1
– ident: e_1_2_1_8_1
  doi: 10.1107/S0108767390002355
– ident: e_1_2_1_39_1
  doi: 10.1021/bi00186a031
– ident: e_1_2_1_29_1
  doi: 10.1021/bi963189t
– ident: e_1_2_1_23_1
  doi: 10.1016/0005-2744(67)90083-6
– ident: e_1_2_1_11_1
  doi: 10.1042/bj2470715
– ident: e_1_2_1_46_1
  doi: 10.1016/0168-1656(93)90038-O
– ident: e_1_2_1_6_1
  doi: 10.1002/pro.5560040908
– ident: e_1_2_1_30_1
  doi: 10.1006/jmbi.1994.1107
– ident: e_1_2_1_5_1
  doi: 10.1107/S0108768191001908
– ident: e_1_2_1_2_1
  doi: 10.1002/pro.5560051021
– ident: e_1_2_1_19_1
  doi: 10.1111/j.1432-1033.1994.tb18883.x
– ident: e_1_2_1_13_1
  doi: 10.1016/S0969-2126(01)00220-9
– ident: e_1_2_1_28_1
  doi: 10.1111/j.1469-185X.1953.tb01386.x
– ident: e_1_2_1_9_1
  doi: 10.1126/science.235.4787.458
– volume: 30
  start-page: 315
  year: 1965
  ident: e_1_2_1_36_1
  article-title: Studies on yeast β‐fructofuranosidase (invertase) XVII.Inhibition by 2‐amino‐2‐hydroxymethylpropan‐l,3‐diol
  publication-title: Arkiv fur kemi.
  contributor:
    fullname: Myrback K.
SSID ssj0004123
Score 2.022503
Snippet Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the crystal...
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal...
Abstract Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea‐water and it is considered as an extreme psychrophile. We have determined the...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 564
SubjectTerms allosteric activation
Allosteric Regulation
alpha-Amylases - antagonists & inhibitors
alpha-Amylases - ultrastructure
Bacterial Proteins - ultrastructure
Binding Sites
Biochemistry, Molecular Biology
Buffers
Calcium
Chlorides
cold adaptation
Cold Temperature
crystal structure
Crystallography, X-Ray
Enzyme Inhibitors - chemistry
glycosyl hydrolases
Gram-Negative Bacteria - enzymology
inhibition
Life Sciences
Models, Molecular
Molecular Sequence Data
Protein Structure, Secondary
psychrophilic
Serine Proteinase Inhibitors
Title Crystal structures of the psychrophilic α‐amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560070304
https://www.ncbi.nlm.nih.gov/pubmed/9541387
https://search.proquest.com/docview/79782798
https://hal.science/hal-00313564
https://pubmed.ncbi.nlm.nih.gov/PMC2143949
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6awlhfxtauzN3WHWNsT05sS_KPxxBWwli3Mlbom7FkmRgSOSTpWP6B_d07yVHb0IfBHi0L2_Kddd_J330C-EBRpKapl4eFEHXIdaPCiqJUmGsVM4LLmglb73z5LZ1e8y834uYAhK-FcaR9JduhmS-Gpp05buVyoUaeJza6upwksa3nLEYDGGSM-RTdF0PGSb9_fBqHOUtzr9QYJba4bShsiLduzo_gSSFoDrdsugcxaTCzjMjHcPMxa_IhmnXh6OI5PNvhSBz3z_sCDrQ5hpOxoRx6scWP6Jidbsn8GJ5O_K5uJ_BnstoSIJxjLxx7S9k2dg0SDERHfF51S7vEotAV4YbVYkvwWqOtQsGx_bPekd9Wa6TH75ZzcplNu8bWYLtZo3Ei4mhhMFamRkdX1791jXa1l5qo46yVNIesXsL1xeefk2m424shVJRA81BqmVYpb_IqYSmLZN5oXimtokaqmLJzxTUjMFQkIm8iSntFLXMd06vOG0qJEsZO4dB0Rr8CFASJKqubV1BoJAQkM6EYl7USDWFRzgL45K1RLnvJjbIXV07ouCvvLRjAexrtXSerlD0dfy1tm9OkFCn_FQfwztuypHdt_4dURne36zKjDDrJijyA096yd1fa-UUA2Z7J9-60f4Zc1Wlz71wzgMQ5xz8GUF79-H5_dPbft3sNR75WMorfwCF5kH5LYGkjz22oEufuE_kL2iYURg
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7ahtD2wmVjItxmIQRPaZPYzuWxqpgKtGNCG9pbFDuOGtE6VS-I8gP43Rw79bayBwSPuSiRk88-37G_8xngDUaREode5meclz5TlfQLjFJ-qmRIkS4ryk298-gsHlyyj1f8age4q4Wxon0p6o6eTDu6Hltt5Wwqu04n1j0f9aPQ1HNm3V24h_01SlyS7sohw6jdQT4O_ZTGqfNqDCJT3tbhJsgboLMDuJ9xHMWNnu5WVNodG03kXcJ5Vzd5m8_agHT6EL66prQ6lG-d1VJ05M8_XB7_ua2P4MGGopJee_kx7Ch9CEc9jen5dE3eEisatbPxh7DfdxvGHcGv_nyNXHNCWk_aFSbypKkIMkxiNdXzZmZmbySx9b1-MV0jc1fEFLiQnlm0b7BLFAuC36WZTRCNy3pBak3q5YJo609ODMMmhS6JVcKrH6okZiIZT-GN41rg8DR_Apen7y_6A3-zzYMvMTdnvlAiLmJWpUVEYxqItFKskEoGlZAhJv6SKYo8K4t4WgWYUfNSpCrEf5hWmG1FlB7Dnm60egqEI9sqjCVfhlEXyZVIuKRMlJJXSHMZ9eCd-835rHXzyFvf5giPm_wGGh68xtZe32RMuAe9YW7OWbtLHrPvoQcnDiQ5fmuz1FJo1awWeYLJeZRkqQfHLWSun7QBnAfJFpa23rR9BZFhbb83SPAgsqj7SwPy8y-fb46e_ffrTmB_cDEa5sMPZ5-ew4EryQzCF7CHaFIvkZMtxSvbA38DjiQ1WA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5iQ8BeuOyihdsshOApaeLYafJYFaoC26gQkyZeothx1IjWiXqZKD-A382x02wte0DaYxIrkZPPPt9xvvMZ4C1GkRynXuYmnOcuU4V0M4xSbqxkECJdViE39c5n59Hwgn2-5JcbW31Z0b4UpacnU0-XY6utrKey0-rEOqOzPg1MPWfSqfOiswP3cczSpE3U25LIgDa7yEeBG4dR3Po1-tSUuHncBHoDdrYHDxKOM7nR1G1Epp2x0UXeJp23tZObnNYGpcET-NF2p9Gi_PSWC-HJ3_84Pd6pv0_h8Zqqkl7T5BncU3ofDnoa0_TpirwjVjxqV-X34VG_3TjuAP70ZyvknBPSeNMuMaEnVUGQaRKrrZ5VtVnFkcTW-brZdIUMXhFT6EJ65ud9hUMjmxN8N1U9QVQuyjkpNSkXc6KtTzkxTJtkOidWEa9-qZyYBWU8hQ3HpcBpanYIF4OP3_tDd73dgysxR2euUCLKIlbEGQ2j0BdxoVgmlfQLIQMlqGQqRL6VUB4XPmbWPBexCvA7xgVmXTQMj2BXV1odA-HIujJjzZdg9EWSJbpchkzkkhdId1nowPv2U6d14-qRNv7NFI-r9AYeDrzB3l43Mmbcw95pas5Z20sesavAgZMWKCm-a_PLJdOqWs7TLibptJvEDhw1sLm-0xp0DnS38LT1pO0riA5r_71GgwPUIu8_HUhH377eHD2_8-NO4OHowyA9_XT-5QXstZWZfvASdhFM6hVSs4V4bQfhXzSkN9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structures+of+the+psychrophilic+alpha-amylase+from+Alteromonas+haloplanctis+in+its+native+form+and+complexed+with+an+inhibitor&rft.jtitle=Protein+science&rft.au=Aghajari%2C+N.&rft.au=Feller%2C+G.&rft.au=Gerday%2C+C.&rft.au=Haser%2C+R.&rft.date=1998-03-01&rft.pub=Wiley&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=7&rft.spage=564&rft.epage=572&rft_id=info:doi/10.1002%2Fpro.5560070304&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00313564v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon