Dietary L-carnitine alters gene expression in skeletal muscle of piglets

Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-s...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 55; no. 3; pp. 419 - 429
Main Authors Keller, Janine, Ringseis, Robert, Priebe, Steffen, Guthke, Reinhard, Kluge, Holger, Eder, Klaus
Format Journal Article
LanguageEnglish
Published Weinheim Wiley-VCH Verlag 01.03.2011
WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text
ISSN1613-4125
1613-4133
1613-4133
DOI10.1002/mnfr.201000293

Cover

Abstract Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
AbstractList Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine‐supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four‐fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin‐like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down‐regulated by carnitine, including pro‐apoptotic transcription factors such as proto‐oncogene c‐fos, proto‐oncogene c‐jun and activating transcription factor 3. Furthermore, atrophy‐related genes such as atrogin‐1, MuRF1, and DRE1 were significantly down‐regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up‐regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF‐1 pathway and suppressing pro‐apoptotic and atrophy‐related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.SCOPECarnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group.METHODS AND RESULTSTo gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group.Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.CONCLUSIONCarnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine‐supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four‐fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin‐like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down‐regulated by carnitine, including pro‐apoptotic transcription factors such as proto‐oncogene c‐fos, proto‐oncogene c‐jun and activating transcription factor 3. Furthermore, atrophy‐related genes such as atrogin‐1, MuRF1, and DRE1 were significantly down‐regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up‐regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF‐1 pathway and suppressing pro‐apoptotic and atrophy‐related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.
Author Kluge, Holger
Ringseis, Robert
Eder, Klaus
Keller, Janine
Guthke, Reinhard
Priebe, Steffen
Author_xml – sequence: 1
  fullname: Keller, Janine
– sequence: 2
  fullname: Ringseis, Robert
– sequence: 3
  fullname: Priebe, Steffen
– sequence: 4
  fullname: Guthke, Reinhard
– sequence: 5
  fullname: Kluge, Holger
– sequence: 6
  fullname: Eder, Klaus
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23953098$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20938991$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFyQeWSxfbETnwshbZIZaFAxdFysuOVqeMsdlZt_z1eZVkQEnDyyHqe8fidQ7IXhoCEPGV0xijlr_pg44zTXFOu4AE5YJJBWTGAvV3NxT45TOkbpcB4BY_IPqcKGqXYAbl443A08b64LDsTgxtdwML4EWMqlphrvFtFTMkNoXChSDfoM--Lfp06j8Vgi5Vb5qv0mDy0xid8sj2PyPXZ2y-nF-Xlh_N3pye5fSUVlDU0om24lLSmVso8XIOshkW3wJpxSSWzFbOcWt5W0ApjWmiAS2NUjSiYgSNyPPVdxeH7GtOoe5c69N4EHNZJN0JwSpuaZfLlP0lWAZObIHhGn23RddvjQq-i63Mo-mdOGXixBUzqjLfRhM6lXxwoAVQ1mZtNXBeHlCLaHcKo3ixMbxamdwvLQvWH0LnRjDnuMRrn_66pSbt1Hu__84h-Pz_79LtbTq5LI97tXBNvtKyhFvrr_FyzK1HNX3-80iLzzyfemkGbZcz_vv6c2wFlSjBQCn4AOO_AQA
CitedBy_id crossref_primary_10_1093_jas_skae122
crossref_primary_10_1186_1743_7075_10_28
crossref_primary_10_1186_s12970_020_00377_2
crossref_primary_10_1111_jpn_12959
crossref_primary_10_1155_2015_646171
crossref_primary_10_1016_j_livsci_2013_04_019
crossref_primary_10_1186_1743_7075_8_76
crossref_primary_10_1186_2050_6511_15_37
crossref_primary_10_2527_jas_2015_9225
crossref_primary_10_1017_S1751731111001327
crossref_primary_10_1515_jbcpp_2016_0185
crossref_primary_10_1007_s10735_011_9326_6
crossref_primary_10_1016_j_clnu_2012_03_005
crossref_primary_10_1080_1745039X_2017_1421340
crossref_primary_10_1007_s13353_019_00522_x
crossref_primary_10_1042_BSR20192144
crossref_primary_10_2460_ajvr_73_7_1002
crossref_primary_10_1186_s12986_017_0238_7
crossref_primary_10_1017_S000711451700126X
crossref_primary_10_14814_phy2_15657
crossref_primary_10_1007_s00394_011_0284_2
crossref_primary_10_1007_s00394_013_0511_0
crossref_primary_10_3389_fanim_2023_1204863
crossref_primary_10_1017_S0007114520000811
crossref_primary_10_1016_j_sjbs_2022_103555
crossref_primary_10_1111_nan_12034
crossref_primary_10_1186_s40104_020_0425_7
Cites_doi 10.1007/s10735-010-9267-5
10.3382/ps.2007-00325
10.1016/j.mam.2004.06.006
10.1007/s00418-008-0539-z
10.1093/jn/134.1.86
10.1089/15230860260196191
10.1093/nar/30.1.207
10.1016/S0047-6374(03)00124-6
10.1111/j.1432-1033.1997.00001.x
10.2527/1996.7471612x
10.1016/j.jss.2008.07.044
10.2741/3253
10.1096/fj.00-0150com
10.1038/ncb1101-1009
10.3168/jds.S0022-0302(95)76807-2
10.2527/2001.7961509x
10.1074/jbc.M202216200
10.1152/ajpendo.00073.2004
10.1385/ENDO:19:1:13
10.1111/j.1365-2052.2006.01460.x
10.1146/annurev.nutr.18.1.39
10.1038/nprot.2008.211
10.1111/j.2042-3306.2002.tb05431.x
10.2527/jas.2008-1662
10.1038/75556
10.1254/jjp.83.119
10.3177/jnsv.47.329
10.1016/j.jnutbio.2008.07.012
10.1111/j.1439-0396.2006.00631.x
10.1093/gerona/56.3.B140
10.1002/jnr.20386
10.1016/0014-5793(92)81368-V
10.1002/(SICI)1098-2744(199707)19:3<180::AID-MC6>3.0.CO;2-I
10.1080/15216540600871100
10.1080/00039420214348
10.1080/17450390601117041
10.1023/A:1024481016187
10.1042/bst0140673
10.1016/j.phrs.2007.06.001
10.1016/0925-4439(94)90042-6
10.1006/clim.1999.4727
10.1136/vr.125.6.125
10.1016/0739-7240(94)00011-O
10.1111/j.1439-0396.2005.00517.x
10.1080/00071660120109980
10.1093/jn/130.7.1809
10.2527/2001.791254x
10.1093/jn/108.10.1621
10.1016/S1388-1981(00)00044-5
10.2527/1999.77123289x
10.1074/jbc.273.32.20378
10.1016/j.devcel.2007.01.018
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1002/mnfr.201000293
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage 429
ExternalDocumentID 20938991
23953098
10_1002_mnfr_201000293
MNFR201000293
ark_67375_WNG_1Q54NBPQ_5
US201301951399
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
DROCM
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7S9
L.6
7X8
ID FETCH-LOGICAL-c4693-7385b8266070f664128e173dcde7126061f41f20f2b43b5aab38326aa97ee51a3
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Fri Sep 05 03:59:16 EDT 2025
Thu Sep 04 17:41:36 EDT 2025
Thu Apr 03 07:09:19 EDT 2025
Mon Jul 21 09:14:18 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 01:51:32 EDT 2025
Wed Jan 22 17:08:48 EST 2025
Wed Oct 30 09:52:17 EDT 2024
Wed Dec 27 19:03:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Vertebrata
Gene array
Meat animals
Farming animal
Mammalia
Gene
Muscle
Artiodactyla
Gene expression
Ungulata
Carnitine
Pig
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4693-7385b8266070f664128e173dcde7126061f41f20f2b43b5aab38326aa97ee51a3
Notes http://dx.doi.org/10.1002/mnfr.201000293
ArticleID:MNFR201000293
istex:8FF8C19802B97A1308B7760E3877D1D820CA8F80
ark:/67375/WNG-1Q54NBPQ-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20938991
PQID 1431609382
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_855200871
proquest_miscellaneous_1431609382
pubmed_primary_20938991
pascalfrancis_primary_23953098
crossref_primary_10_1002_mnfr_201000293
crossref_citationtrail_10_1002_mnfr_201000293
wiley_primary_10_1002_mnfr_201000293_MNFR201000293
istex_primary_ark_67375_WNG_1Q54NBPQ_5
fao_agris_US201301951399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol. Nutr. Food Res
PublicationYear 2011
Publisher Wiley-VCH Verlag
WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: Wiley-VCH Verlag
– name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References Kerner, J., Hoppel, C. L., Fatty acid import into mitochondria. Biochim. Biophys. Acta 2000, 1486, 1-17.
Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G. et al., Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J. Neurosci. Res. 2005, 79, 509-521.
Rivero, J. L., Sporleder, H. P., Quiroz-Rothe, E., Vervuert, I. et al., Oral L-carnitine combined with training promotes changes in skeletal muscle. Equine Vet. J. Suppl. 2002, 34, 269-274.
Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- Nährstoffversorgung von Schweinen. DLG-Verlag, Frankfurt/Main, Germany 2006.
Di Marzio, L., Moretti, S., D'Alò, S., Zazzeroni, F. et al., Acetyl-L-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin. Immunol. 1999, 92, 103-110.
Arai, A., Spencer, J. A., Olson, E. N., STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 2002, 277, 24453-24459.
Nier, B., Weinberg, P. D., Rimbach, G., Stöcklin, E., Barella, L., Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2006, 58, 540-548.
Bassler, R., Buchholz, H., MethodenbuchIII, B., Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung. VDLUFA-Verlag, Darmstadt, Germany 1993.
Lösel, D., Kalbe, C., Rehfeldt, C., L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight. J. Anim. Sci. 2009, 87, 2216-2226.
Cifone, M. G., Alesse, E., Di Marzio, L., Ruggeri, B. et al., Effect of L-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc. Assoc. Am. Physicians. 1997, 109, 146-153.
Kanter, M., Topcu-Tarladacalisir, Y., Parlar, S., Antiapoptotic effect of L-carnitine on testicular irradiation in rats. J. Mol. Histol. 2010 (Epub ahead of print).
Baumann, M. U., Deborde, S., Illsley, N. P., Placental glucose transfer and fetal growth. Endocrine 2002, 19, 13-22.
Dingová, H., Fukalová, J., Maninová, M., Philimonenko, V. V., Hozák, P., Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 2009, 13, 425-434.
Ringseis, R., Pösel, S., Hirche, F., Eder, K., Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol. Res. 2007, 56, 1775-1783.
Tomomura, M., Nakagawa, K., Saheki, T., Proto-oncogene c-jun and c-fos messenger RNAs increase in the liver of carnitine-deficient juvenile visceral steatosis (jvs) mice. FEBS Lett. 1992, 31, 63-66.
Moretti, S., Famularo, G., Marcellini, S., Boschini, A. et al., L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid. Redox Signal 2002, 4, 391-403.
Steiber, A., Kerner, J., Hoppel, C. L., Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Asp. Med. 2004, 25, 455-473.
Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T. et al., DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev. Cell 2007, 12, 443-455.
Foster, C. V., Harris, R. C., Pouret, E. J., Effect of oral L-carnitine on its concentration in the plasma of yearling Thoroughbred horses. Vet. Rec. 1989, 25, 125-128.
Li, M., Li, C., Parkhouse, W. S., Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mech. Ageing Dev. 2003, 124, 771-778.
Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R. et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001, 3, 1009-1013.
Sacheck, J. M., Ohtsuka, A., McLary, S. C., Goldberg, A. L., IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591-E601.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25, 25-29.
Hoppel, C. L., Davis, A. T., Inter-tissue relationships in the synthesis and distribution of carnitine. Biochem. Soc. Trans. 1986, 14, 673-674.
Yeh, C. H., Chen, T. P., Wang, Y. C., Lin, Y. M., Lin, P. J., HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J. Surg. Res. 2009, 155, 147-156.
Ramanau, A., Kluge, H., Spilke, J., Eder, K., Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 2004, 134, 86-92.
Rincker, M. J., Carter, S. D., Fent, R. W., Senne, B. W., Owen, K. Q., Effects of L-carnitine on carcass composition and tissue accretion in weanling pigs. J. Anim. Sci. 2001, 79, 150 (Abstr.).
Heo, Y. R., Kang, C. W., Cha, Y. S., L-Carnitine changes the levels of insulin-likegrowth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47, 329-334.
Birkenfeld, C., Ramanau, A., Kluge, H., Spilke, J., Eder, K., Effect of dietary L-carnitine supplementation on growth performance of piglets from control sows or sows treated with L-carnitine during pregnancy and lactation. J. Anim. Physiol. Anim. Nutr. 2005, 89, 277-283.
National Research Council. Nutrient Requirements of Swine, 10th Rev. Ed., National Academy of Sciences, Washington, DC 1998.
Siu, P. M., Always, S. E., Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss. Front. Biosci. 2009, 14, 432-452.
Huang da, W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57.
Doberenz, J., Birkenfeld, C., Kluge, H., Eder, K., Effects of L-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J. Anim. Physiol. Anim. Nutr. 2006, 90, 487-499.
Ringseis, R., Wege, N., Wen, G., Rauer, C. et al., Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J. Nutr. Biochem. 2009, 20, 840-847.
Greenwood, R. H., Titgemeyer, E. C., Stokka, G. L., Drouillard, J. S., Löest, C. A., Effects of L-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers. J. Anim. Sci. 2001, 79, 254-260.
Owen, K. Q., Nelssen, J. L., Goodband, R. D., Weeden, T. L., Blum, S. A., Effect of L-carnitine and soybean oil on growth performance and body composition of early-weaned pigs. J. Anim. Sci. 1996, 74, 1612-1619.
LaCount, D. W., Drackley, J. K., Weigel, D. J., Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. J. Dairy Sci. 1995, 78, 1824-1836.
Owen, K. Q., Nelssen, J. L., Goodband, R. D., Tokach, M. D., Friesen, K. G., Effect of dietary L-carnitine on growth performance and body composition in nursery and growing-finishing pigs. J. Anim. Sci. 2001, 79, 1509-1515.
Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J. et al., Annotation of the affymetrix porcine genome microarray. Anim. Genet. 2006, 37, 423-424.
Rebouche, C. J., Seim, H., Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 1998, 18, 39-61.
Wolfe, R. G., Maxwell, C. V., Nelson, E. C., Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J. Nutr. 1978, 108, 1621-1634.
Ramanau, A., Kluge, H., Spilke, J., Eder, K., Reproductive performance of sows supplemented with dietary L-carnitine over three reproductive cycles. Arch. Anim. Nutr. 2002, 56, 287-296.
Zhao, B., Yu, W., Qian, M., Simmons-Menchaca, M. et al., Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Mol. Carcinog. 1997, 19, 180-190.
St-Amand, J., Okamura, K., Matsumoto, K., Shimizu, S., Sogawa, Y., Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J. 2001, 15, 684-692.
Tein, I., Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 2003, 26, 147-169.
McGarry, J. D., Brown, N. F., The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14.
Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H. et al., Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 1998, 273, 20378-20382.
Zhai, W., Neuman, S. L., Latour, M. A., Hester, P. Y., The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poult. Sci. 2008, 87, 1171-1181.
Rani, P. J., Panneerselvam, C., Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B140-B141.
Musser, R. E., Goodband, R. D., Tokach, M. D., Owen, K. Q. et al., Effects of L-carnitine fed during lactation on sow and litter performance. J. Anim. Sci. 1999, 77, 3289-3295.
Ishii, T., Shimpo, Y., Matsuoka, Y., Kinoshita, K., Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000, 83, 119-124.
Kita, K., Kato, S., Amanyaman, M., Okumura, J., Yokota, H., Dietary L-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br. Poult. Sci. 2002, 43, 117-121.
Edgar, R., Domrachev, M.,
2004; 287
2009; 87
2002; 19
2004; 25
2002; 56
1995; 78
2006; 37
2002; 277
2009; 155
1996; 74
2000; 130
2001; 47
1998; 273
2004; 134
1998; 18
2009; 14
2009; 13
1997; 109
2002; 43
1997; 19
2001; 15
2007; 61
2001; 56
1999; 92
1978; 108
2003; 124
2005; 79
2006; 90
2009; 20
2002; 30
2000; 25
2010
2002; 34
1995; 12
1986; 14
2006; 58
1998
2006
2002; 4
1993
1994; 1226
1992; 31
1989; 25
2007; 56
2007; 12
2005; 89
1997; 244
2000; 83
2003; 26
1999; 77
2008; 87
2001; 3
2009; 4
2001; 79
2000; 1486
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
Wolfe R. G. (e_1_2_6_23_2) 1978; 108
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
Gesellschaft für Ernährungsphysiologie (e_1_2_6_28_2) 2006
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_43_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
Rincker M. J. (e_1_2_6_24_2) 2001; 79
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
National Research Council (e_1_2_6_26_2) 1998
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
Bassler R. (e_1_2_6_27_2) 1993
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_8_2
Cifone M. G. (e_1_2_6_40_2) 1997; 109
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J. et al., Annotation of the affymetrix porcine genome microarray. Anim. Genet. 2006, 37, 423-424.
– reference: Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25, 25-29.
– reference: Kerner, J., Hoppel, C. L., Fatty acid import into mitochondria. Biochim. Biophys. Acta 2000, 1486, 1-17.
– reference: Di Marzio, L., Moretti, S., D'Alò, S., Zazzeroni, F. et al., Acetyl-L-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin. Immunol. 1999, 92, 103-110.
– reference: Lösel, D., Kalbe, C., Rehfeldt, C., L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight. J. Anim. Sci. 2009, 87, 2216-2226.
– reference: Tomomura, M., Imamura, Y., Tomomura, A., Horiuchi, M., Saheki, T., Abnormal gene expression and regulation in the liver of jvs mice with systemic carnitine deficiency. Biochim. Biophys. Acta 1994, 1226, 307-314.
– reference: Heo, K., Odle, J., Han, I. K., Cho, W. et al., Dietary L-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. J. Nutr. 2000, 130, 1809-1814.
– reference: Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T. et al., DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev. Cell 2007, 12, 443-455.
– reference: Rani, P. J., Panneerselvam, C., Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B140-B141.
– reference: Rivero, J. L., Sporleder, H. P., Quiroz-Rothe, E., Vervuert, I. et al., Oral L-carnitine combined with training promotes changes in skeletal muscle. Equine Vet. J. Suppl. 2002, 34, 269-274.
– reference: Ramanau, A., Kluge, H., Spilke, J., Eder, K., Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 2004, 134, 86-92.
– reference: Huang da, W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57.
– reference: St-Amand, J., Okamura, K., Matsumoto, K., Shimizu, S., Sogawa, Y., Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J. 2001, 15, 684-692.
– reference: Rincker, M. J., Carter, S. D., Fent, R. W., Senne, B. W., Owen, K. Q., Effects of L-carnitine on carcass composition and tissue accretion in weanling pigs. J. Anim. Sci. 2001, 79, 150 (Abstr.).
– reference: Edgar, R., Domrachev, M., Lash, A. E., Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207-210.
– reference: Kita, K., Kato, S., Amanyaman, M., Okumura, J., Yokota, H., Dietary L-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br. Poult. Sci. 2002, 43, 117-121.
– reference: Hoppel, C. L., Davis, A. T., Inter-tissue relationships in the synthesis and distribution of carnitine. Biochem. Soc. Trans. 1986, 14, 673-674.
– reference: Tomomura, M., Nakagawa, K., Saheki, T., Proto-oncogene c-jun and c-fos messenger RNAs increase in the liver of carnitine-deficient juvenile visceral steatosis (jvs) mice. FEBS Lett. 1992, 31, 63-66.
– reference: Sacheck, J. M., Ohtsuka, A., McLary, S. C., Goldberg, A. L., IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591-E601.
– reference: Wolfe, R. G., Maxwell, C. V., Nelson, E. C., Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J. Nutr. 1978, 108, 1621-1634.
– reference: Ringseis, R., Pösel, S., Hirche, F., Eder, K., Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol. Res. 2007, 56, 1775-1783.
– reference: Zhai, W., Neuman, S. L., Latour, M. A., Hester, P. Y., The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poult. Sci. 2008, 87, 1171-1181.
– reference: Ringseis, R., Wege, N., Wen, G., Rauer, C. et al., Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J. Nutr. Biochem. 2009, 20, 840-847.
– reference: Rebouche, C. J., Seim, H., Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 1998, 18, 39-61.
– reference: Doberenz, J., Birkenfeld, C., Kluge, H., Eder, K., Effects of L-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J. Anim. Physiol. Anim. Nutr. 2006, 90, 487-499.
– reference: Foster, C. V., Harris, R. C., Pouret, E. J., Effect of oral L-carnitine on its concentration in the plasma of yearling Thoroughbred horses. Vet. Rec. 1989, 25, 125-128.
– reference: Birkenfeld, C., Ramanau, A., Kluge, H., Spilke, J., Eder, K., Effect of dietary L-carnitine supplementation on growth performance of piglets from control sows or sows treated with L-carnitine during pregnancy and lactation. J. Anim. Physiol. Anim. Nutr. 2005, 89, 277-283.
– reference: Ramanau, A., Kluge, H., Spilke, J., Eder, K., Reproductive performance of sows supplemented with dietary L-carnitine over three reproductive cycles. Arch. Anim. Nutr. 2002, 56, 287-296.
– reference: Baumann, M. U., Deborde, S., Illsley, N. P., Placental glucose transfer and fetal growth. Endocrine 2002, 19, 13-22.
– reference: Moretti, S., Famularo, G., Marcellini, S., Boschini, A. et al., L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid. Redox Signal 2002, 4, 391-403.
– reference: Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H. et al., Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 1998, 273, 20378-20382.
– reference: Dingová, H., Fukalová, J., Maninová, M., Philimonenko, V. V., Hozák, P., Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 2009, 13, 425-434.
– reference: Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- Nährstoffversorgung von Schweinen. DLG-Verlag, Frankfurt/Main, Germany 2006.
– reference: Zhao, B., Yu, W., Qian, M., Simmons-Menchaca, M. et al., Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Mol. Carcinog. 1997, 19, 180-190.
– reference: Cifone, M. G., Alesse, E., Di Marzio, L., Ruggeri, B. et al., Effect of L-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc. Assoc. Am. Physicians. 1997, 109, 146-153.
– reference: National Research Council. Nutrient Requirements of Swine, 10th Rev. Ed., National Academy of Sciences, Washington, DC 1998.
– reference: Nier, B., Weinberg, P. D., Rimbach, G., Stöcklin, E., Barella, L., Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2006, 58, 540-548.
– reference: Yeh, C. H., Chen, T. P., Wang, Y. C., Lin, Y. M., Lin, P. J., HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J. Surg. Res. 2009, 155, 147-156.
– reference: Ishii, T., Shimpo, Y., Matsuoka, Y., Kinoshita, K., Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000, 83, 119-124.
– reference: Geng, A., Li, B., Guo, Y., Effects of dietary L-carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites-susceptible broilers. Arch. Anim. Nutr. 2007, 61, 50-60.
– reference: Musser, R. E., Goodband, R. D., Tokach, M. D., Owen, K. Q. et al., Effects of L-carnitine fed during lactation on sow and litter performance. J. Anim. Sci. 1999, 77, 3289-3295.
– reference: Greenwood, R. H., Titgemeyer, E. C., Stokka, G. L., Drouillard, J. S., Löest, C. A., Effects of L-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers. J. Anim. Sci. 2001, 79, 254-260.
– reference: Li, M., Li, C., Parkhouse, W. S., Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mech. Ageing Dev. 2003, 124, 771-778.
– reference: Kanter, M., Topcu-Tarladacalisir, Y., Parlar, S., Antiapoptotic effect of L-carnitine on testicular irradiation in rats. J. Mol. Histol. 2010 (Epub ahead of print).
– reference: McGarry, J. D., Brown, N. F., The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14.
– reference: Owen, K. Q., Nelssen, J. L., Goodband, R. D., Tokach, M. D., Friesen, K. G., Effect of dietary L-carnitine on growth performance and body composition in nursery and growing-finishing pigs. J. Anim. Sci. 2001, 79, 1509-1515.
– reference: Owen, K. Q., Nelssen, J. L., Goodband, R. D., Weeden, T. L., Blum, S. A., Effect of L-carnitine and soybean oil on growth performance and body composition of early-weaned pigs. J. Anim. Sci. 1996, 74, 1612-1619.
– reference: LaCount, D. W., Drackley, J. K., Weigel, D. J., Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. J. Dairy Sci. 1995, 78, 1824-1836.
– reference: Bassler, R., Buchholz, H., MethodenbuchIII, B., Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung. VDLUFA-Verlag, Darmstadt, Germany 1993.
– reference: Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G. et al., Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J. Neurosci. Res. 2005, 79, 509-521.
– reference: Heo, Y. R., Kang, C. W., Cha, Y. S., L-Carnitine changes the levels of insulin-likegrowth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47, 329-334.
– reference: Arai, A., Spencer, J. A., Olson, E. N., STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 2002, 277, 24453-24459.
– reference: Steiber, A., Kerner, J., Hoppel, C. L., Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Asp. Med. 2004, 25, 455-473.
– reference: Tein, I., Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 2003, 26, 147-169.
– reference: Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R. et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001, 3, 1009-1013.
– reference: Siu, P. M., Always, S. E., Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss. Front. Biosci. 2009, 14, 432-452.
– reference: Kelley, R. L., Jungst, S. B., Spencer, T. E., Owsley, W. F. et al., Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs. Domest. Anim. Endocrinol. 1995, 12, 83-94.
– volume: 124
  start-page: 771
  year: 2003
  end-page: 778
  article-title: Age‐related differences in the des IGF‐I‐mediated activation of Akt‐1 and p70 S6K in mouse skeletal muscle
  publication-title: Mech. Ageing Dev.
– volume: 20
  start-page: 840
  year: 2009
  end-page: 847
  article-title: Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species
  publication-title: J. Nutr. Biochem.
– volume: 26
  start-page: 147
  year: 2003
  end-page: 169
  article-title: Carnitine transport: pathophysiology and metabolism of known molecular defects
  publication-title: J. Inherit. Metab. Dis.
– volume: 78
  start-page: 1824
  year: 1995
  end-page: 1836
  article-title: Responses of dairy cows during early lactation to ruminal or abomasal administration of ‐carnitine
  publication-title: J. Dairy Sci.
– volume: 12
  start-page: 83
  year: 1995
  end-page: 94
  article-title: Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs
  publication-title: Domest. Anim. Endocrinol.
– volume: 3
  start-page: 1009
  year: 2001
  end-page: 1013
  article-title: Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways
  publication-title: Nat. Cell Biol.
– volume: 77
  start-page: 3289
  year: 1999
  end-page: 3295
  article-title: Effects of ‐carnitine fed during lactation on sow and litter performance
  publication-title: J. Anim. Sci.
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
– volume: 155
  start-page: 147
  year: 2009
  end-page: 156
  article-title: HO‐1 activation can attenuate cardiomyocytic apoptosis inhibition of NF‐kappaB and AP‐1 translocation following cardiac global ischemia and reperfusion
  publication-title: J. Surg. Res.
– volume: 58
  start-page: 540
  year: 2006
  end-page: 548
  article-title: Differential gene expression in skeletal muscle of rats with vitamin E deficiency
  publication-title: IUBMB Life
– volume: 56
  start-page: 287
  year: 2002
  end-page: 296
  article-title: Reproductive performance of sows supplemented with dietary ‐carnitine over three reproductive cycles
  publication-title: Arch. Anim. Nutr.
– volume: 108
  start-page: 1621
  year: 1978
  end-page: 1634
  article-title: Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig
  publication-title: J. Nutr.
– year: 1998
– volume: 56
  start-page: B140
  year: 2001
  end-page: B141
  article-title: Protective efficacy of ‐carnitine on acetylcholinesterase activity in aged rat brain
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 79
  start-page: 150
  year: 2001
  article-title: Effects of ‐carnitine on carcass composition and tissue accretion in weanling pigs
  publication-title: J. Anim. Sci.
– volume: 87
  start-page: 2216
  year: 2009
  end-page: 2226
  article-title: ‐Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight
  publication-title: J. Anim. Sci.
– volume: 47
  start-page: 329
  year: 2001
  end-page: 334
  article-title: ‐Carnitine changes the levels of insulin‐likegrowth factors (IGFs) and IGF binding proteins in streptozotocin‐induced diabetic rat
  publication-title: J. Nutr. Sci. Vitaminol. (Tokyo)
– volume: 56
  start-page: 1775
  year: 2007
  end-page: 1783
  article-title: Treatment with pharmacological peroxisome proliferator‐activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats
  publication-title: Pharmacol. Res.
– volume: 30
  start-page: 207
  year: 2002
  end-page: 210
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res.
– volume: 277
  start-page: 24453
  year: 2002
  end-page: 24459
  article-title: STARS, a striated muscle activator of Rho signaling and serum response factor‐dependent transcription
  publication-title: J. Biol. Chem.
– volume: 1226
  start-page: 307
  year: 1994
  end-page: 314
  article-title: Abnormal gene expression and regulation in the liver of jvs mice with systemic carnitine deficiency
  publication-title: Biochim. Biophys. Acta
– volume: 4
  start-page: 391
  year: 2002
  end-page: 403
  article-title: ‐carnitine reduces lymphocyte apoptosis and oxidant stress in HIV‐1‐infected subjects treated with zidovudine and didanosine
  publication-title: Antioxid. Redox Signal
– volume: 34
  start-page: 269
  year: 2002
  end-page: 274
  article-title: Oral ‐carnitine combined with training promotes changes in skeletal muscle
  publication-title: Equine Vet. J. Suppl.
– volume: 61
  start-page: 50
  year: 2007
  end-page: 60
  article-title: Effects of dietary ‐carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites‐susceptible broilers
  publication-title: Arch. Anim. Nutr.
– volume: 89
  start-page: 277
  year: 2005
  end-page: 283
  article-title: Effect of dietary ‐carnitine supplementation on growth performance of piglets from control sows or sows treated with ‐carnitine during pregnancy and lactation
  publication-title: J. Anim. Physiol. Anim. Nutr.
– volume: 87
  start-page: 1171
  year: 2008
  end-page: 1181
  article-title: The effect of male and female supplementation of ‐carnitine on reproductive traits of white leghorns
  publication-title: Poult. Sci.
– year: 2010
  article-title: Antiapoptotic effect of ‐carnitine on testicular irradiation in rats
  publication-title: J. Mol. Histol.
– year: 1993
– volume: 43
  start-page: 117
  year: 2002
  end-page: 121
  article-title: Dietary ‐carnitine increases plasma insulin‐like growth factor‐I concentration in chicks fed a diet with adequate dietary protein level
  publication-title: Br. Poult. Sci.
– volume: 12
  start-page: 443
  year: 2007
  end-page: 455
  article-title: DRE‐1: an evolutionarily conserved F box protein that regulates developmental age
  publication-title: Dev. Cell
– volume: 25
  start-page: 125
  year: 1989
  end-page: 128
  article-title: Effect of oral ‐carnitine on its concentration in the plasma of yearling Thoroughbred horses
  publication-title: Vet. Rec.
– volume: 79
  start-page: 509
  year: 2005
  end-page: 521
  article-title: Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2
  publication-title: J. Neurosci. Res.
– volume: 13
  start-page: 425
  year: 2009
  end-page: 434
  article-title: Ultrastructural localization of actin and actin‐binding proteins in the nucleus
  publication-title: Histochem. Cell Biol.
– volume: 273
  start-page: 20378
  year: 1998
  end-page: 20382
  article-title: Molecular and functional identification of sodium ion‐dependent, high affinity human carnitine transporter OCTN2
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat. Genet.
– volume: 37
  start-page: 423
  year: 2006
  end-page: 424
  article-title: Annotation of the affymetrix porcine genome microarray
  publication-title: Anim. Genet.
– volume: 19
  start-page: 180
  year: 1997
  end-page: 190
  article-title: Involvement of activator protein‐1 (AP‐1) in induction of apoptosis by vitamin E succinate in human breast cancer cells
  publication-title: Mol. Carcinog.
– volume: 25
  start-page: 455
  year: 2004
  end-page: 473
  article-title: Carnitine: a nutritional, biosynthetic, and functional perspective
  publication-title: Mol. Asp. Med.
– volume: 14
  start-page: 673
  year: 1986
  end-page: 674
  article-title: Inter‐tissue relationships in the synthesis and distribution of carnitine
  publication-title: Biochem. Soc. Trans.
– volume: 1486
  start-page: 1
  year: 2000
  end-page: 17
  article-title: Fatty acid import into mitochondria
  publication-title: Biochim. Biophys. Acta
– volume: 19
  start-page: 13
  year: 2002
  end-page: 22
  article-title: Placental glucose transfer and fetal growth
  publication-title: Endocrine
– volume: 74
  start-page: 1612
  year: 1996
  end-page: 1619
  article-title: Effect of ‐carnitine and soybean oil on growth performance and body composition of early‐weaned pigs
  publication-title: J. Anim. Sci.
– volume: 244
  start-page: 1
  year: 1997
  end-page: 14
  article-title: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis
  publication-title: Eur. J. Biochem.
– volume: 287
  start-page: E591
  year: 2004
  end-page: E601
  article-title: IGF‐I stimulates muscle growth by suppressing protein breakdown and expression of atrophy‐related ubiquitin ligases, atrogin‐1 and MuRF1
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 92
  start-page: 103
  year: 1999
  end-page: 110
  article-title: Acetyl‐ ‐carnitine administration increases insulin‐like growth factor 1 levels in asymptomatic HIV‐1‐infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation
  publication-title: Clin. Immunol.
– volume: 130
  start-page: 1809
  year: 2000
  end-page: 1814
  article-title: Dietary ‐carnitine improves nitrogen utilization in growing pigs fed low energy, fat‐containing diets
  publication-title: J. Nutr.
– volume: 109
  start-page: 146
  year: 1997
  end-page: 153
  article-title: Effect of ‐carnitine treatment on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients
  publication-title: Proc. Assoc. Am. Physicians.
– volume: 90
  start-page: 487
  year: 2006
  end-page: 499
  article-title: Effects of ‐carnitine supplementation in pregnant sows on plasma concentrations of insulin‐like growth factors, various hormones and metabolites and chorion characteristics
  publication-title: J. Anim. Physiol. Anim. Nutr.
– year: 2006
– volume: 134
  start-page: 86
  year: 2004
  end-page: 92
  article-title: Supplementation of sows with ‐carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production
  publication-title: J. Nutr.
– volume: 14
  start-page: 432
  year: 2009
  end-page: 452
  article-title: Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss
  publication-title: Front. Biosci.
– volume: 15
  start-page: 684
  year: 2001
  end-page: 692
  article-title: Characterization of control and immobilized skeletal muscle: an overview from genetic engineering
  publication-title: FASEB J.
– volume: 18
  start-page: 39
  year: 1998
  end-page: 61
  article-title: Carnitine metabolism and its regulation in microorganisms and mammals
  publication-title: Annu. Rev. Nutr.
– volume: 83
  start-page: 119
  year: 2000
  end-page: 124
  article-title: Anti‐apoptotic effect of acetyl‐l‐carnitine and I‐carnitine in primary cultured neurons
  publication-title: Jpn. J. Pharmacol.
– volume: 79
  start-page: 1509
  year: 2001
  end-page: 1515
  article-title: Effect of dietary ‐carnitine on growth performance and body composition in nursery and growing–finishing pigs
  publication-title: J. Anim. Sci.
– volume: 79
  start-page: 254
  year: 2001
  end-page: 260
  article-title: Effects of ‐carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers
  publication-title: J. Anim. Sci.
– volume: 31
  start-page: 63
  year: 1992
  end-page: 66
  article-title: Proto‐oncogene c‐jun and c‐fos messenger RNAs increase in the liver of carnitine‐deficient juvenile visceral steatosis (jvs) mice
  publication-title: FEBS Lett.
– ident: e_1_2_6_41_2
  doi: 10.1007/s10735-010-9267-5
– ident: e_1_2_6_16_2
  doi: 10.3382/ps.2007-00325
– ident: e_1_2_6_4_2
  doi: 10.1016/j.mam.2004.06.006
– ident: e_1_2_6_56_2
  doi: 10.1007/s00418-008-0539-z
– ident: e_1_2_6_19_2
  doi: 10.1093/jn/134.1.86
– ident: e_1_2_6_39_2
  doi: 10.1089/15230860260196191
– ident: e_1_2_6_30_2
  doi: 10.1093/nar/30.1.207
– ident: e_1_2_6_52_2
  doi: 10.1016/S0047-6374(03)00124-6
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1432-1033.1997.00001.x
– ident: e_1_2_6_25_2
  doi: 10.2527/1996.7471612x
– ident: e_1_2_6_38_2
  doi: 10.1016/j.jss.2008.07.044
– ident: e_1_2_6_43_2
  doi: 10.2741/3253
– ident: e_1_2_6_44_2
  doi: 10.1096/fj.00-0150com
– ident: e_1_2_6_51_2
  doi: 10.1038/ncb1101-1009
– volume: 109
  start-page: 146
  year: 1997
  ident: e_1_2_6_40_2
  article-title: Effect of L‐carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients
  publication-title: Proc. Assoc. Am. Physicians.
– ident: e_1_2_6_13_2
  doi: 10.3168/jds.S0022-0302(95)76807-2
– ident: e_1_2_6_20_2
  doi: 10.2527/2001.7961509x
– ident: e_1_2_6_57_2
  doi: 10.1074/jbc.M202216200
– ident: e_1_2_6_53_2
  doi: 10.1152/ajpendo.00073.2004
– volume-title: Nutrient Requirements of Swine
  year: 1998
  ident: e_1_2_6_26_2
– ident: e_1_2_6_50_2
  doi: 10.1385/ENDO:19:1:13
– ident: e_1_2_6_31_2
  doi: 10.1111/j.1365-2052.2006.01460.x
– ident: e_1_2_6_6_2
  doi: 10.1146/annurev.nutr.18.1.39
– ident: e_1_2_6_32_2
  doi: 10.1038/nprot.2008.211
– ident: e_1_2_6_12_2
  doi: 10.1111/j.2042-3306.2002.tb05431.x
– ident: e_1_2_6_55_2
  doi: 10.2527/jas.2008-1662
– ident: e_1_2_6_33_2
  doi: 10.1038/75556
– ident: e_1_2_6_42_2
  doi: 10.1254/jjp.83.119
– ident: e_1_2_6_46_2
  doi: 10.3177/jnsv.47.329
– ident: e_1_2_6_34_2
  doi: 10.1016/j.jnutbio.2008.07.012
– ident: e_1_2_6_47_2
  doi: 10.1111/j.1439-0396.2006.00631.x
– ident: e_1_2_6_9_2
  doi: 10.1093/gerona/56.3.B140
– ident: e_1_2_6_10_2
  doi: 10.1002/jnr.20386
– ident: e_1_2_6_36_2
  doi: 10.1016/0014-5793(92)81368-V
– ident: e_1_2_6_37_2
  doi: 10.1002/(SICI)1098-2744(199707)19:3<180::AID-MC6>3.0.CO;2-I
– ident: e_1_2_6_58_2
  doi: 10.1080/15216540600871100
– ident: e_1_2_6_18_2
  doi: 10.1080/00039420214348
– ident: e_1_2_6_15_2
  doi: 10.1080/17450390601117041
– ident: e_1_2_6_7_2
  doi: 10.1023/A:1024481016187
– volume-title: Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung
  year: 1993
  ident: e_1_2_6_27_2
– ident: e_1_2_6_5_2
  doi: 10.1042/bst0140673
– ident: e_1_2_6_29_2
  doi: 10.1016/j.phrs.2007.06.001
– ident: e_1_2_6_35_2
  doi: 10.1016/0925-4439(94)90042-6
– ident: e_1_2_6_48_2
  doi: 10.1006/clim.1999.4727
– ident: e_1_2_6_11_2
  doi: 10.1136/vr.125.6.125
– volume: 79
  start-page: 150
  year: 2001
  ident: e_1_2_6_24_2
  article-title: Effects of L‐carnitine on carcass composition and tissue accretion in weanling pigs
  publication-title: J. Anim. Sci.
– ident: e_1_2_6_49_2
  doi: 10.1016/0739-7240(94)00011-O
– ident: e_1_2_6_22_2
  doi: 10.1111/j.1439-0396.2005.00517.x
– ident: e_1_2_6_45_2
  doi: 10.1080/00071660120109980
– ident: e_1_2_6_21_2
  doi: 10.1093/jn/130.7.1809
– ident: e_1_2_6_14_2
  doi: 10.2527/2001.791254x
– volume: 108
  start-page: 1621
  year: 1978
  ident: e_1_2_6_23_2
  article-title: Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig
  publication-title: J. Nutr.
  doi: 10.1093/jn/108.10.1621
– ident: e_1_2_6_2_2
  doi: 10.1016/S1388-1981(00)00044-5
– ident: e_1_2_6_17_2
  doi: 10.2527/1999.77123289x
– volume-title: Empfehlungen zur Energie‐ Nährstoffversorgung von Schweinen
  year: 2006
  ident: e_1_2_6_28_2
– ident: e_1_2_6_8_2
  doi: 10.1074/jbc.273.32.20378
– ident: e_1_2_6_54_2
  doi: 10.1016/j.devcel.2007.01.018
SSID ssj0031243
Score 2.1377351
Snippet Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown....
Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown....
Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. To gain...
Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.SCOPECarnitine...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 419
SubjectTerms Analysis of Variance
Animal Feed
Animal Nutritional Physiological Phenomena
Animal productions
Animals
Biological and medical sciences
Carnitine
Carnitine - pharmacology
cytoskeletal proteins
diet
Diet - veterinary
Dietary Supplements
Down-Regulation
drug effects
Energy Metabolism
Food industries
Fundamental and applied biological sciences. Psychology
Gene array
Gene expression
Gene Expression Profiling
gene expression regulation
genes
Genetic Association Studies
growth & development
insulin
insulin-like growth factor I
Insulin-Like Growth Factor I - metabolism
Male
metabolism
Microarray Analysis
Muscle
muscle fibers
muscle protein
Muscle, Skeletal
Muscle, Skeletal - drug effects
Muscle, Skeletal - growth & development
muscles
pharmacology
Pig
piglets
protein binding
skeletal muscle
Swine
Terrestrial animal productions
Transcription Factor 3
Transcription Factor 3 - metabolism
transcription factors
transcriptome
Up-Regulation
Vertebrates
veterinary
Weight Gain
Title Dietary L-carnitine alters gene expression in skeletal muscle of piglets
URI https://api.istex.fr/ark:/67375/WNG-1Q54NBPQ-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201000293
https://www.ncbi.nlm.nih.gov/pubmed/20938991
https://www.proquest.com/docview/1431609382
https://www.proquest.com/docview/855200871
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BT1x4Q82jMhIqp7SJH3kcgbJUFY1oYUVvlp3Y1WrbbLXJShUnfgK_kV_COK-yiAoJjkk8sTyZ8XxjTz4DvEyksMakOigxOgbC8DgwBQI5bjHaZTZMTVtVeZjH-1NxcCJPfvmLv-OHGBfcvGe087V3cG3q3SvS0PPKLdvSLL-x5Ok-Ix578vy945E_imPwaivsMWYFAkP5wNoYst118bWodNPpBWJVr-ZLXyupa1SX6865-BMQXce1bWCa3AE9DKmrR5nvrBqzU3z9je3xf8Z8F273qJW-7szsHtyw1X0gezPb0G3aU4ue0Xxg9n8AB_4Z9kM__Pj2vfCrLw12Ttu9-Zqi0VpqL_sa3IrOKlrPMf5hIkDPVzV2QReOXsxO8Vb9EKaTd5_f7gf9sQ1Bgbk2Dzw_jsGsJcbZxMUx6j21UcLLorRJhOlTHDkRORY6ZgQ3UmuDWTKLtc4Sa2Wk-SPYqBaV3QQalmlopEyxqRYpd1oYUchMhKVjBWJFAsHw2VTRc5r7ozXOVMfGzJTXmBo1RuDV2P6iY_O4tuUmWoHSpzjVqukn5jd4I0SjiOcIbLemMb5BL-e-PC6R6kv-XkVHUuRvPh4pSWBrzXZGAcYzycMsJfBiMCaFXu23anRlF6saEzIexWHGU0aAXtMmlZ4yCxNeAo87Q7zqwIsi8ifAWnP6y2DVYT45Hq-e_IvQU7jVrbb76rxnsNEsV_Y5wrXGbLUu-RNaYTK5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iZQEb3tDwKEZCZZU28SOPJVCGocxEtHQEO8tO7Go0baaazEgVKz6Bb-RLuM6rGkSFBMskdizfXPuea58cA7yMBTdaJ8ovMDr6XLPI1zkCOWYw2qUmSHTNqhxn0XDCD76Kjk3o_oVp9CH6BTc3Mur52g1wtyC9d6kaelbaRc3NcjtLbAOuc0QbLv_aP-oVpBiGr5pjj1HL5xjMO93GgO6t11-LSxtWzRGtOkNfOLakqtBgtjnp4k9QdB3Z1qFpcBt016mGkTLbXS31bv7tN73H_-r1HbjVAlfyuvG0u3DNlPfA25-aJdkhrbroKck6cf_7cOCeYUNk9PP7j9wtwCyxdVJvz1cE_dYQc9HScEsyLUk1wxCIuQA5W1XYBJlbcj49wVvVA5gM3h2_HfrtyQ1-juk2851EjsbEJcIJxUYRGj4xYcyKvDBxiBlUFFoeWhpYqjnTQimNiTKNlEpjY0So2EPYLOel2QISFEmghUiwqOIJs4prnouUB4WlOcJFD_zuu8m8lTV3p2ucykaQmUpnMdlbzINXffnzRtDjypJb6AZSneBsKyefqdvjDRGQIqTzYKf2jf4NajFzDLlYyC_ZexkeCp69-XQohQfba87TV6AsFSxIEw9edN4kcWC73RpVmvmqwpyMhVGQsoR6QK4okwinmoU5rwePGk-8bMBVRfDvAa396S-dleNscNRfPf6XSs_hxvB4PJKjD9nHJ3CzWXx3ZL2nsLlcrMwzRG9LvV2Pz1-JtDbY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuvKGhUIyEyilt4kceR6AspbRRW1jRm2UndrXaNrvaZKWqJ34Cv5FfwjjJpiyiQoJjEk8sT2Y839iTzwCvYsGN1onyC4yOPtcs8nWOQI4ZjHapCRLdVFUeZNHukO-diJNf_uJv-SH6BTfnGc187Rx8WtjtK9LQ89LOmtIst7HEVuAmjxBOOFh03BNIMYxeTYk9Bi2fYyxf0DYGdHtZfiksrVg1QbDq9HzhiiVVhfqy7UEXf0Kiy8C2iUyDu6AWY2oLUsZb81pv5Ze_0T3-z6DvwZ0OtpI3rZ3dhxumfADezsjUZJN03KJnJFtQ-z-EPfcM-yH7P759z93yS42dk2ZzviJotYaYi64ItySjklRjDICYCZDzeYVdkIkl09Ep3qoewXDw_su7Xb87t8HPMdlmviPI0Zi2RDid2ChCvScmjFmRFyYOMX-KQstDSwNLNWdaKKUxTaaRUmlsjAgVewyr5aQ0a0CCIgm0EAk2VTxhVnHNc5HyoLA0R7Dogb_4bDLvSM3d2RpnsqVjptJpTPYa8-B1337a0nlc23INrUCqU5xr5fAzdTu8IcJRBHQebDam0b9BzcauPi4W8mv2QYZHgmdvD4-k8GBjyXZ6AcpSwYI08eDlwpgkurXbq1GlmcwrzMhYGAUpS6gH5Jo2iXCcWZjxevCkNcSrDpwoQn8PaGNOfxmsPMgGx_3V038RegG3DncGcv9j9mkdbrcr765S7xms1rO5eY7QrdYbjXf-BKrsNYc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+L-carnitine+alters+gene+expression+in+skeletal+muscle+of+piglets&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=KELLER%2C+Janine&rft.au=RINGSEIS%2C+Robert&rft.au=PRIEBE%2C+Stiffen&rft.au=GUTHKE%2C+Reinhard&rft.date=2011-03-01&rft.pub=Wiley&rft.issn=1613-4125&rft.volume=55&rft.issue=3&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1002%2Fmnfr.201000293&rft.externalDBID=n%2Fa&rft.externalDocID=23953098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon