Dietary L-carnitine alters gene expression in skeletal muscle of piglets
Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-s...
Saved in:
Published in | Molecular nutrition & food research Vol. 55; no. 3; pp. 419 - 429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley-VCH Verlag
01.03.2011
WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.201000293 |
Cover
Abstract | Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. |
---|---|
AbstractList | Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine‐supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four‐fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin‐like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down‐regulated by carnitine, including pro‐apoptotic transcription factors such as proto‐oncogene c‐fos, proto‐oncogene c‐jun and activating transcription factor 3. Furthermore, atrophy‐related genes such as atrogin‐1, MuRF1, and DRE1 were significantly down‐regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up‐regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF‐1 pathway and suppressing pro‐apoptotic and atrophy‐related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.SCOPECarnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group.METHODS AND RESULTSTo gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group.Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively.CONCLUSIONCarnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine‐supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four‐fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin‐like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down‐regulated by carnitine, including pro‐apoptotic transcription factors such as proto‐oncogene c‐fos, proto‐oncogene c‐jun and activating transcription factor 3. Furthermore, atrophy‐related genes such as atrogin‐1, MuRF1, and DRE1 were significantly down‐regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up‐regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF‐1 pathway and suppressing pro‐apoptotic and atrophy‐related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. |
Author | Kluge, Holger Ringseis, Robert Eder, Klaus Keller, Janine Guthke, Reinhard Priebe, Steffen |
Author_xml | – sequence: 1 fullname: Keller, Janine – sequence: 2 fullname: Ringseis, Robert – sequence: 3 fullname: Priebe, Steffen – sequence: 4 fullname: Guthke, Reinhard – sequence: 5 fullname: Kluge, Holger – sequence: 6 fullname: Eder, Klaus |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23953098$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20938991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFyQeWSxfbETnwshbZIZaFAxdFysuOVqeMsdlZt_z1eZVkQEnDyyHqe8fidQ7IXhoCEPGV0xijlr_pg44zTXFOu4AE5YJJBWTGAvV3NxT45TOkbpcB4BY_IPqcKGqXYAbl443A08b64LDsTgxtdwML4EWMqlphrvFtFTMkNoXChSDfoM--Lfp06j8Vgi5Vb5qv0mDy0xid8sj2PyPXZ2y-nF-Xlh_N3pye5fSUVlDU0om24lLSmVso8XIOshkW3wJpxSSWzFbOcWt5W0ApjWmiAS2NUjSiYgSNyPPVdxeH7GtOoe5c69N4EHNZJN0JwSpuaZfLlP0lWAZObIHhGn23RddvjQq-i63Mo-mdOGXixBUzqjLfRhM6lXxwoAVQ1mZtNXBeHlCLaHcKo3ixMbxamdwvLQvWH0LnRjDnuMRrn_66pSbt1Hu__84h-Pz_79LtbTq5LI97tXBNvtKyhFvrr_FyzK1HNX3-80iLzzyfemkGbZcz_vv6c2wFlSjBQCn4AOO_AQA |
CitedBy_id | crossref_primary_10_1093_jas_skae122 crossref_primary_10_1186_1743_7075_10_28 crossref_primary_10_1186_s12970_020_00377_2 crossref_primary_10_1111_jpn_12959 crossref_primary_10_1155_2015_646171 crossref_primary_10_1016_j_livsci_2013_04_019 crossref_primary_10_1186_1743_7075_8_76 crossref_primary_10_1186_2050_6511_15_37 crossref_primary_10_2527_jas_2015_9225 crossref_primary_10_1017_S1751731111001327 crossref_primary_10_1515_jbcpp_2016_0185 crossref_primary_10_1007_s10735_011_9326_6 crossref_primary_10_1016_j_clnu_2012_03_005 crossref_primary_10_1080_1745039X_2017_1421340 crossref_primary_10_1007_s13353_019_00522_x crossref_primary_10_1042_BSR20192144 crossref_primary_10_2460_ajvr_73_7_1002 crossref_primary_10_1186_s12986_017_0238_7 crossref_primary_10_1017_S000711451700126X crossref_primary_10_14814_phy2_15657 crossref_primary_10_1007_s00394_011_0284_2 crossref_primary_10_1007_s00394_013_0511_0 crossref_primary_10_3389_fanim_2023_1204863 crossref_primary_10_1017_S0007114520000811 crossref_primary_10_1016_j_sjbs_2022_103555 crossref_primary_10_1111_nan_12034 crossref_primary_10_1186_s40104_020_0425_7 |
Cites_doi | 10.1007/s10735-010-9267-5 10.3382/ps.2007-00325 10.1016/j.mam.2004.06.006 10.1007/s00418-008-0539-z 10.1093/jn/134.1.86 10.1089/15230860260196191 10.1093/nar/30.1.207 10.1016/S0047-6374(03)00124-6 10.1111/j.1432-1033.1997.00001.x 10.2527/1996.7471612x 10.1016/j.jss.2008.07.044 10.2741/3253 10.1096/fj.00-0150com 10.1038/ncb1101-1009 10.3168/jds.S0022-0302(95)76807-2 10.2527/2001.7961509x 10.1074/jbc.M202216200 10.1152/ajpendo.00073.2004 10.1385/ENDO:19:1:13 10.1111/j.1365-2052.2006.01460.x 10.1146/annurev.nutr.18.1.39 10.1038/nprot.2008.211 10.1111/j.2042-3306.2002.tb05431.x 10.2527/jas.2008-1662 10.1038/75556 10.1254/jjp.83.119 10.3177/jnsv.47.329 10.1016/j.jnutbio.2008.07.012 10.1111/j.1439-0396.2006.00631.x 10.1093/gerona/56.3.B140 10.1002/jnr.20386 10.1016/0014-5793(92)81368-V 10.1002/(SICI)1098-2744(199707)19:3<180::AID-MC6>3.0.CO;2-I 10.1080/15216540600871100 10.1080/00039420214348 10.1080/17450390601117041 10.1023/A:1024481016187 10.1042/bst0140673 10.1016/j.phrs.2007.06.001 10.1016/0925-4439(94)90042-6 10.1006/clim.1999.4727 10.1136/vr.125.6.125 10.1016/0739-7240(94)00011-O 10.1111/j.1439-0396.2005.00517.x 10.1080/00071660120109980 10.1093/jn/130.7.1809 10.2527/2001.791254x 10.1093/jn/108.10.1621 10.1016/S1388-1981(00)00044-5 10.2527/1999.77123289x 10.1074/jbc.273.32.20378 10.1016/j.devcel.2007.01.018 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1002/mnfr.201000293 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | 429 |
ExternalDocumentID | 20938991 23953098 10_1002_mnfr_201000293 MNFR201000293 ark_67375_WNG_1Q54NBPQ_5 US201301951399 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABCVL ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WRC WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ DROCM AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 1OB 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c4693-7385b8266070f664128e173dcde7126061f41f20f2b43b5aab38326aa97ee51a3 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Sep 05 03:59:16 EDT 2025 Thu Sep 04 17:41:36 EDT 2025 Thu Apr 03 07:09:19 EDT 2025 Mon Jul 21 09:14:18 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 01:51:32 EDT 2025 Wed Jan 22 17:08:48 EST 2025 Wed Oct 30 09:52:17 EDT 2024 Wed Dec 27 19:03:52 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Vertebrata Gene array Meat animals Farming animal Mammalia Gene Muscle Artiodactyla Gene expression Ungulata Carnitine Pig |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4693-7385b8266070f664128e173dcde7126061f41f20f2b43b5aab38326aa97ee51a3 |
Notes | http://dx.doi.org/10.1002/mnfr.201000293 ArticleID:MNFR201000293 istex:8FF8C19802B97A1308B7760E3877D1D820CA8F80 ark:/67375/WNG-1Q54NBPQ-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20938991 |
PQID | 1431609382 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_855200871 proquest_miscellaneous_1431609382 pubmed_primary_20938991 pascalfrancis_primary_23953098 crossref_primary_10_1002_mnfr_201000293 crossref_citationtrail_10_1002_mnfr_201000293 wiley_primary_10_1002_mnfr_201000293_MNFR201000293 istex_primary_ark_67375_WNG_1Q54NBPQ_5 fao_agris_US201301951399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2011 |
Publisher | Wiley-VCH Verlag WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: Wiley-VCH Verlag – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | Kerner, J., Hoppel, C. L., Fatty acid import into mitochondria. Biochim. Biophys. Acta 2000, 1486, 1-17. Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G. et al., Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J. Neurosci. Res. 2005, 79, 509-521. Rivero, J. L., Sporleder, H. P., Quiroz-Rothe, E., Vervuert, I. et al., Oral L-carnitine combined with training promotes changes in skeletal muscle. Equine Vet. J. Suppl. 2002, 34, 269-274. Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- Nährstoffversorgung von Schweinen. DLG-Verlag, Frankfurt/Main, Germany 2006. Di Marzio, L., Moretti, S., D'Alò, S., Zazzeroni, F. et al., Acetyl-L-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin. Immunol. 1999, 92, 103-110. Arai, A., Spencer, J. A., Olson, E. N., STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 2002, 277, 24453-24459. Nier, B., Weinberg, P. D., Rimbach, G., Stöcklin, E., Barella, L., Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2006, 58, 540-548. Bassler, R., Buchholz, H., MethodenbuchIII, B., Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung. VDLUFA-Verlag, Darmstadt, Germany 1993. Lösel, D., Kalbe, C., Rehfeldt, C., L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight. J. Anim. Sci. 2009, 87, 2216-2226. Cifone, M. G., Alesse, E., Di Marzio, L., Ruggeri, B. et al., Effect of L-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc. Assoc. Am. Physicians. 1997, 109, 146-153. Kanter, M., Topcu-Tarladacalisir, Y., Parlar, S., Antiapoptotic effect of L-carnitine on testicular irradiation in rats. J. Mol. Histol. 2010 (Epub ahead of print). Baumann, M. U., Deborde, S., Illsley, N. P., Placental glucose transfer and fetal growth. Endocrine 2002, 19, 13-22. Dingová, H., Fukalová, J., Maninová, M., Philimonenko, V. V., Hozák, P., Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 2009, 13, 425-434. Ringseis, R., Pösel, S., Hirche, F., Eder, K., Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol. Res. 2007, 56, 1775-1783. Tomomura, M., Nakagawa, K., Saheki, T., Proto-oncogene c-jun and c-fos messenger RNAs increase in the liver of carnitine-deficient juvenile visceral steatosis (jvs) mice. FEBS Lett. 1992, 31, 63-66. Moretti, S., Famularo, G., Marcellini, S., Boschini, A. et al., L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid. Redox Signal 2002, 4, 391-403. Steiber, A., Kerner, J., Hoppel, C. L., Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Asp. Med. 2004, 25, 455-473. Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T. et al., DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev. Cell 2007, 12, 443-455. Foster, C. V., Harris, R. C., Pouret, E. J., Effect of oral L-carnitine on its concentration in the plasma of yearling Thoroughbred horses. Vet. Rec. 1989, 25, 125-128. Li, M., Li, C., Parkhouse, W. S., Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mech. Ageing Dev. 2003, 124, 771-778. Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R. et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001, 3, 1009-1013. Sacheck, J. M., Ohtsuka, A., McLary, S. C., Goldberg, A. L., IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591-E601. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25, 25-29. Hoppel, C. L., Davis, A. T., Inter-tissue relationships in the synthesis and distribution of carnitine. Biochem. Soc. Trans. 1986, 14, 673-674. Yeh, C. H., Chen, T. P., Wang, Y. C., Lin, Y. M., Lin, P. J., HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J. Surg. Res. 2009, 155, 147-156. Ramanau, A., Kluge, H., Spilke, J., Eder, K., Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 2004, 134, 86-92. Rincker, M. J., Carter, S. D., Fent, R. W., Senne, B. W., Owen, K. Q., Effects of L-carnitine on carcass composition and tissue accretion in weanling pigs. J. Anim. Sci. 2001, 79, 150 (Abstr.). Heo, Y. R., Kang, C. W., Cha, Y. S., L-Carnitine changes the levels of insulin-likegrowth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47, 329-334. Birkenfeld, C., Ramanau, A., Kluge, H., Spilke, J., Eder, K., Effect of dietary L-carnitine supplementation on growth performance of piglets from control sows or sows treated with L-carnitine during pregnancy and lactation. J. Anim. Physiol. Anim. Nutr. 2005, 89, 277-283. National Research Council. Nutrient Requirements of Swine, 10th Rev. Ed., National Academy of Sciences, Washington, DC 1998. Siu, P. M., Always, S. E., Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss. Front. Biosci. 2009, 14, 432-452. Huang da, W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57. Doberenz, J., Birkenfeld, C., Kluge, H., Eder, K., Effects of L-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J. Anim. Physiol. Anim. Nutr. 2006, 90, 487-499. Ringseis, R., Wege, N., Wen, G., Rauer, C. et al., Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J. Nutr. Biochem. 2009, 20, 840-847. Greenwood, R. H., Titgemeyer, E. C., Stokka, G. L., Drouillard, J. S., Löest, C. A., Effects of L-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers. J. Anim. Sci. 2001, 79, 254-260. Owen, K. Q., Nelssen, J. L., Goodband, R. D., Weeden, T. L., Blum, S. A., Effect of L-carnitine and soybean oil on growth performance and body composition of early-weaned pigs. J. Anim. Sci. 1996, 74, 1612-1619. LaCount, D. W., Drackley, J. K., Weigel, D. J., Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. J. Dairy Sci. 1995, 78, 1824-1836. Owen, K. Q., Nelssen, J. L., Goodband, R. D., Tokach, M. D., Friesen, K. G., Effect of dietary L-carnitine on growth performance and body composition in nursery and growing-finishing pigs. J. Anim. Sci. 2001, 79, 1509-1515. Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J. et al., Annotation of the affymetrix porcine genome microarray. Anim. Genet. 2006, 37, 423-424. Rebouche, C. J., Seim, H., Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 1998, 18, 39-61. Wolfe, R. G., Maxwell, C. V., Nelson, E. C., Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J. Nutr. 1978, 108, 1621-1634. Ramanau, A., Kluge, H., Spilke, J., Eder, K., Reproductive performance of sows supplemented with dietary L-carnitine over three reproductive cycles. Arch. Anim. Nutr. 2002, 56, 287-296. Zhao, B., Yu, W., Qian, M., Simmons-Menchaca, M. et al., Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Mol. Carcinog. 1997, 19, 180-190. St-Amand, J., Okamura, K., Matsumoto, K., Shimizu, S., Sogawa, Y., Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J. 2001, 15, 684-692. Tein, I., Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 2003, 26, 147-169. McGarry, J. D., Brown, N. F., The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14. Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H. et al., Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 1998, 273, 20378-20382. Zhai, W., Neuman, S. L., Latour, M. A., Hester, P. Y., The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poult. Sci. 2008, 87, 1171-1181. Rani, P. J., Panneerselvam, C., Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B140-B141. Musser, R. E., Goodband, R. D., Tokach, M. D., Owen, K. Q. et al., Effects of L-carnitine fed during lactation on sow and litter performance. J. Anim. Sci. 1999, 77, 3289-3295. Ishii, T., Shimpo, Y., Matsuoka, Y., Kinoshita, K., Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000, 83, 119-124. Kita, K., Kato, S., Amanyaman, M., Okumura, J., Yokota, H., Dietary L-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br. Poult. Sci. 2002, 43, 117-121. Edgar, R., Domrachev, M., 2004; 287 2009; 87 2002; 19 2004; 25 2002; 56 1995; 78 2006; 37 2002; 277 2009; 155 1996; 74 2000; 130 2001; 47 1998; 273 2004; 134 1998; 18 2009; 14 2009; 13 1997; 109 2002; 43 1997; 19 2001; 15 2007; 61 2001; 56 1999; 92 1978; 108 2003; 124 2005; 79 2006; 90 2009; 20 2002; 30 2000; 25 2010 2002; 34 1995; 12 1986; 14 2006; 58 1998 2006 2002; 4 1993 1994; 1226 1992; 31 1989; 25 2007; 56 2007; 12 2005; 89 1997; 244 2000; 83 2003; 26 1999; 77 2008; 87 2001; 3 2009; 4 2001; 79 2000; 1486 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 Wolfe R. G. (e_1_2_6_23_2) 1978; 108 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 Gesellschaft für Ernährungsphysiologie (e_1_2_6_28_2) 2006 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_43_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 Rincker M. J. (e_1_2_6_24_2) 2001; 79 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 National Research Council (e_1_2_6_26_2) 1998 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 Bassler R. (e_1_2_6_27_2) 1993 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_8_2 Cifone M. G. (e_1_2_6_40_2) 1997; 109 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J. et al., Annotation of the affymetrix porcine genome microarray. Anim. Genet. 2006, 37, 423-424. – reference: Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25, 25-29. – reference: Kerner, J., Hoppel, C. L., Fatty acid import into mitochondria. Biochim. Biophys. Acta 2000, 1486, 1-17. – reference: Di Marzio, L., Moretti, S., D'Alò, S., Zazzeroni, F. et al., Acetyl-L-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin. Immunol. 1999, 92, 103-110. – reference: Lösel, D., Kalbe, C., Rehfeldt, C., L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight. J. Anim. Sci. 2009, 87, 2216-2226. – reference: Tomomura, M., Imamura, Y., Tomomura, A., Horiuchi, M., Saheki, T., Abnormal gene expression and regulation in the liver of jvs mice with systemic carnitine deficiency. Biochim. Biophys. Acta 1994, 1226, 307-314. – reference: Heo, K., Odle, J., Han, I. K., Cho, W. et al., Dietary L-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. J. Nutr. 2000, 130, 1809-1814. – reference: Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T. et al., DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev. Cell 2007, 12, 443-455. – reference: Rani, P. J., Panneerselvam, C., Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B140-B141. – reference: Rivero, J. L., Sporleder, H. P., Quiroz-Rothe, E., Vervuert, I. et al., Oral L-carnitine combined with training promotes changes in skeletal muscle. Equine Vet. J. Suppl. 2002, 34, 269-274. – reference: Ramanau, A., Kluge, H., Spilke, J., Eder, K., Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 2004, 134, 86-92. – reference: Huang da, W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57. – reference: St-Amand, J., Okamura, K., Matsumoto, K., Shimizu, S., Sogawa, Y., Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J. 2001, 15, 684-692. – reference: Rincker, M. J., Carter, S. D., Fent, R. W., Senne, B. W., Owen, K. Q., Effects of L-carnitine on carcass composition and tissue accretion in weanling pigs. J. Anim. Sci. 2001, 79, 150 (Abstr.). – reference: Edgar, R., Domrachev, M., Lash, A. E., Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207-210. – reference: Kita, K., Kato, S., Amanyaman, M., Okumura, J., Yokota, H., Dietary L-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br. Poult. Sci. 2002, 43, 117-121. – reference: Hoppel, C. L., Davis, A. T., Inter-tissue relationships in the synthesis and distribution of carnitine. Biochem. Soc. Trans. 1986, 14, 673-674. – reference: Tomomura, M., Nakagawa, K., Saheki, T., Proto-oncogene c-jun and c-fos messenger RNAs increase in the liver of carnitine-deficient juvenile visceral steatosis (jvs) mice. FEBS Lett. 1992, 31, 63-66. – reference: Sacheck, J. M., Ohtsuka, A., McLary, S. C., Goldberg, A. L., IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591-E601. – reference: Wolfe, R. G., Maxwell, C. V., Nelson, E. C., Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J. Nutr. 1978, 108, 1621-1634. – reference: Ringseis, R., Pösel, S., Hirche, F., Eder, K., Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol. Res. 2007, 56, 1775-1783. – reference: Zhai, W., Neuman, S. L., Latour, M. A., Hester, P. Y., The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poult. Sci. 2008, 87, 1171-1181. – reference: Ringseis, R., Wege, N., Wen, G., Rauer, C. et al., Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J. Nutr. Biochem. 2009, 20, 840-847. – reference: Rebouche, C. J., Seim, H., Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 1998, 18, 39-61. – reference: Doberenz, J., Birkenfeld, C., Kluge, H., Eder, K., Effects of L-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J. Anim. Physiol. Anim. Nutr. 2006, 90, 487-499. – reference: Foster, C. V., Harris, R. C., Pouret, E. J., Effect of oral L-carnitine on its concentration in the plasma of yearling Thoroughbred horses. Vet. Rec. 1989, 25, 125-128. – reference: Birkenfeld, C., Ramanau, A., Kluge, H., Spilke, J., Eder, K., Effect of dietary L-carnitine supplementation on growth performance of piglets from control sows or sows treated with L-carnitine during pregnancy and lactation. J. Anim. Physiol. Anim. Nutr. 2005, 89, 277-283. – reference: Ramanau, A., Kluge, H., Spilke, J., Eder, K., Reproductive performance of sows supplemented with dietary L-carnitine over three reproductive cycles. Arch. Anim. Nutr. 2002, 56, 287-296. – reference: Baumann, M. U., Deborde, S., Illsley, N. P., Placental glucose transfer and fetal growth. Endocrine 2002, 19, 13-22. – reference: Moretti, S., Famularo, G., Marcellini, S., Boschini, A. et al., L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid. Redox Signal 2002, 4, 391-403. – reference: Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H. et al., Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 1998, 273, 20378-20382. – reference: Dingová, H., Fukalová, J., Maninová, M., Philimonenko, V. V., Hozák, P., Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 2009, 13, 425-434. – reference: Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- Nährstoffversorgung von Schweinen. DLG-Verlag, Frankfurt/Main, Germany 2006. – reference: Zhao, B., Yu, W., Qian, M., Simmons-Menchaca, M. et al., Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Mol. Carcinog. 1997, 19, 180-190. – reference: Cifone, M. G., Alesse, E., Di Marzio, L., Ruggeri, B. et al., Effect of L-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc. Assoc. Am. Physicians. 1997, 109, 146-153. – reference: National Research Council. Nutrient Requirements of Swine, 10th Rev. Ed., National Academy of Sciences, Washington, DC 1998. – reference: Nier, B., Weinberg, P. D., Rimbach, G., Stöcklin, E., Barella, L., Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2006, 58, 540-548. – reference: Yeh, C. H., Chen, T. P., Wang, Y. C., Lin, Y. M., Lin, P. J., HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J. Surg. Res. 2009, 155, 147-156. – reference: Ishii, T., Shimpo, Y., Matsuoka, Y., Kinoshita, K., Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000, 83, 119-124. – reference: Geng, A., Li, B., Guo, Y., Effects of dietary L-carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites-susceptible broilers. Arch. Anim. Nutr. 2007, 61, 50-60. – reference: Musser, R. E., Goodband, R. D., Tokach, M. D., Owen, K. Q. et al., Effects of L-carnitine fed during lactation on sow and litter performance. J. Anim. Sci. 1999, 77, 3289-3295. – reference: Greenwood, R. H., Titgemeyer, E. C., Stokka, G. L., Drouillard, J. S., Löest, C. A., Effects of L-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers. J. Anim. Sci. 2001, 79, 254-260. – reference: Li, M., Li, C., Parkhouse, W. S., Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mech. Ageing Dev. 2003, 124, 771-778. – reference: Kanter, M., Topcu-Tarladacalisir, Y., Parlar, S., Antiapoptotic effect of L-carnitine on testicular irradiation in rats. J. Mol. Histol. 2010 (Epub ahead of print). – reference: McGarry, J. D., Brown, N. F., The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14. – reference: Owen, K. Q., Nelssen, J. L., Goodband, R. D., Tokach, M. D., Friesen, K. G., Effect of dietary L-carnitine on growth performance and body composition in nursery and growing-finishing pigs. J. Anim. Sci. 2001, 79, 1509-1515. – reference: Owen, K. Q., Nelssen, J. L., Goodband, R. D., Weeden, T. L., Blum, S. A., Effect of L-carnitine and soybean oil on growth performance and body composition of early-weaned pigs. J. Anim. Sci. 1996, 74, 1612-1619. – reference: LaCount, D. W., Drackley, J. K., Weigel, D. J., Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. J. Dairy Sci. 1995, 78, 1824-1836. – reference: Bassler, R., Buchholz, H., MethodenbuchIII, B., Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung. VDLUFA-Verlag, Darmstadt, Germany 1993. – reference: Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G. et al., Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J. Neurosci. Res. 2005, 79, 509-521. – reference: Heo, Y. R., Kang, C. W., Cha, Y. S., L-Carnitine changes the levels of insulin-likegrowth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47, 329-334. – reference: Arai, A., Spencer, J. A., Olson, E. N., STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 2002, 277, 24453-24459. – reference: Steiber, A., Kerner, J., Hoppel, C. L., Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Asp. Med. 2004, 25, 455-473. – reference: Tein, I., Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 2003, 26, 147-169. – reference: Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R. et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001, 3, 1009-1013. – reference: Siu, P. M., Always, S. E., Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss. Front. Biosci. 2009, 14, 432-452. – reference: Kelley, R. L., Jungst, S. B., Spencer, T. E., Owsley, W. F. et al., Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs. Domest. Anim. Endocrinol. 1995, 12, 83-94. – volume: 124 start-page: 771 year: 2003 end-page: 778 article-title: Age‐related differences in the des IGF‐I‐mediated activation of Akt‐1 and p70 S6K in mouse skeletal muscle publication-title: Mech. Ageing Dev. – volume: 20 start-page: 840 year: 2009 end-page: 847 article-title: Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species publication-title: J. Nutr. Biochem. – volume: 26 start-page: 147 year: 2003 end-page: 169 article-title: Carnitine transport: pathophysiology and metabolism of known molecular defects publication-title: J. Inherit. Metab. Dis. – volume: 78 start-page: 1824 year: 1995 end-page: 1836 article-title: Responses of dairy cows during early lactation to ruminal or abomasal administration of ‐carnitine publication-title: J. Dairy Sci. – volume: 12 start-page: 83 year: 1995 end-page: 94 article-title: Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs publication-title: Domest. Anim. Endocrinol. – volume: 3 start-page: 1009 year: 2001 end-page: 1013 article-title: Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways publication-title: Nat. Cell Biol. – volume: 77 start-page: 3289 year: 1999 end-page: 3295 article-title: Effects of ‐carnitine fed during lactation on sow and litter performance publication-title: J. Anim. Sci. – volume: 4 start-page: 44 year: 2009 end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. – volume: 155 start-page: 147 year: 2009 end-page: 156 article-title: HO‐1 activation can attenuate cardiomyocytic apoptosis inhibition of NF‐kappaB and AP‐1 translocation following cardiac global ischemia and reperfusion publication-title: J. Surg. Res. – volume: 58 start-page: 540 year: 2006 end-page: 548 article-title: Differential gene expression in skeletal muscle of rats with vitamin E deficiency publication-title: IUBMB Life – volume: 56 start-page: 287 year: 2002 end-page: 296 article-title: Reproductive performance of sows supplemented with dietary ‐carnitine over three reproductive cycles publication-title: Arch. Anim. Nutr. – volume: 108 start-page: 1621 year: 1978 end-page: 1634 article-title: Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig publication-title: J. Nutr. – year: 1998 – volume: 56 start-page: B140 year: 2001 end-page: B141 article-title: Protective efficacy of ‐carnitine on acetylcholinesterase activity in aged rat brain publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 79 start-page: 150 year: 2001 article-title: Effects of ‐carnitine on carcass composition and tissue accretion in weanling pigs publication-title: J. Anim. Sci. – volume: 87 start-page: 2216 year: 2009 end-page: 2226 article-title: ‐Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight publication-title: J. Anim. Sci. – volume: 47 start-page: 329 year: 2001 end-page: 334 article-title: ‐Carnitine changes the levels of insulin‐likegrowth factors (IGFs) and IGF binding proteins in streptozotocin‐induced diabetic rat publication-title: J. Nutr. Sci. Vitaminol. (Tokyo) – volume: 56 start-page: 1775 year: 2007 end-page: 1783 article-title: Treatment with pharmacological peroxisome proliferator‐activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats publication-title: Pharmacol. Res. – volume: 30 start-page: 207 year: 2002 end-page: 210 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res. – volume: 277 start-page: 24453 year: 2002 end-page: 24459 article-title: STARS, a striated muscle activator of Rho signaling and serum response factor‐dependent transcription publication-title: J. Biol. Chem. – volume: 1226 start-page: 307 year: 1994 end-page: 314 article-title: Abnormal gene expression and regulation in the liver of jvs mice with systemic carnitine deficiency publication-title: Biochim. Biophys. Acta – volume: 4 start-page: 391 year: 2002 end-page: 403 article-title: ‐carnitine reduces lymphocyte apoptosis and oxidant stress in HIV‐1‐infected subjects treated with zidovudine and didanosine publication-title: Antioxid. Redox Signal – volume: 34 start-page: 269 year: 2002 end-page: 274 article-title: Oral ‐carnitine combined with training promotes changes in skeletal muscle publication-title: Equine Vet. J. Suppl. – volume: 61 start-page: 50 year: 2007 end-page: 60 article-title: Effects of dietary ‐carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites‐susceptible broilers publication-title: Arch. Anim. Nutr. – volume: 89 start-page: 277 year: 2005 end-page: 283 article-title: Effect of dietary ‐carnitine supplementation on growth performance of piglets from control sows or sows treated with ‐carnitine during pregnancy and lactation publication-title: J. Anim. Physiol. Anim. Nutr. – volume: 87 start-page: 1171 year: 2008 end-page: 1181 article-title: The effect of male and female supplementation of ‐carnitine on reproductive traits of white leghorns publication-title: Poult. Sci. – year: 2010 article-title: Antiapoptotic effect of ‐carnitine on testicular irradiation in rats publication-title: J. Mol. Histol. – year: 1993 – volume: 43 start-page: 117 year: 2002 end-page: 121 article-title: Dietary ‐carnitine increases plasma insulin‐like growth factor‐I concentration in chicks fed a diet with adequate dietary protein level publication-title: Br. Poult. Sci. – volume: 12 start-page: 443 year: 2007 end-page: 455 article-title: DRE‐1: an evolutionarily conserved F box protein that regulates developmental age publication-title: Dev. Cell – volume: 25 start-page: 125 year: 1989 end-page: 128 article-title: Effect of oral ‐carnitine on its concentration in the plasma of yearling Thoroughbred horses publication-title: Vet. Rec. – volume: 79 start-page: 509 year: 2005 end-page: 521 article-title: Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2 publication-title: J. Neurosci. Res. – volume: 13 start-page: 425 year: 2009 end-page: 434 article-title: Ultrastructural localization of actin and actin‐binding proteins in the nucleus publication-title: Histochem. Cell Biol. – volume: 273 start-page: 20378 year: 1998 end-page: 20382 article-title: Molecular and functional identification of sodium ion‐dependent, high affinity human carnitine transporter OCTN2 publication-title: J. Biol. Chem. – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: tool for the unification of biology publication-title: Nat. Genet. – volume: 37 start-page: 423 year: 2006 end-page: 424 article-title: Annotation of the affymetrix porcine genome microarray publication-title: Anim. Genet. – volume: 19 start-page: 180 year: 1997 end-page: 190 article-title: Involvement of activator protein‐1 (AP‐1) in induction of apoptosis by vitamin E succinate in human breast cancer cells publication-title: Mol. Carcinog. – volume: 25 start-page: 455 year: 2004 end-page: 473 article-title: Carnitine: a nutritional, biosynthetic, and functional perspective publication-title: Mol. Asp. Med. – volume: 14 start-page: 673 year: 1986 end-page: 674 article-title: Inter‐tissue relationships in the synthesis and distribution of carnitine publication-title: Biochem. Soc. Trans. – volume: 1486 start-page: 1 year: 2000 end-page: 17 article-title: Fatty acid import into mitochondria publication-title: Biochim. Biophys. Acta – volume: 19 start-page: 13 year: 2002 end-page: 22 article-title: Placental glucose transfer and fetal growth publication-title: Endocrine – volume: 74 start-page: 1612 year: 1996 end-page: 1619 article-title: Effect of ‐carnitine and soybean oil on growth performance and body composition of early‐weaned pigs publication-title: J. Anim. Sci. – volume: 244 start-page: 1 year: 1997 end-page: 14 article-title: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis publication-title: Eur. J. Biochem. – volume: 287 start-page: E591 year: 2004 end-page: E601 article-title: IGF‐I stimulates muscle growth by suppressing protein breakdown and expression of atrophy‐related ubiquitin ligases, atrogin‐1 and MuRF1 publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 92 start-page: 103 year: 1999 end-page: 110 article-title: Acetyl‐ ‐carnitine administration increases insulin‐like growth factor 1 levels in asymptomatic HIV‐1‐infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation publication-title: Clin. Immunol. – volume: 130 start-page: 1809 year: 2000 end-page: 1814 article-title: Dietary ‐carnitine improves nitrogen utilization in growing pigs fed low energy, fat‐containing diets publication-title: J. Nutr. – volume: 109 start-page: 146 year: 1997 end-page: 153 article-title: Effect of ‐carnitine treatment on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients publication-title: Proc. Assoc. Am. Physicians. – volume: 90 start-page: 487 year: 2006 end-page: 499 article-title: Effects of ‐carnitine supplementation in pregnant sows on plasma concentrations of insulin‐like growth factors, various hormones and metabolites and chorion characteristics publication-title: J. Anim. Physiol. Anim. Nutr. – year: 2006 – volume: 134 start-page: 86 year: 2004 end-page: 92 article-title: Supplementation of sows with ‐carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production publication-title: J. Nutr. – volume: 14 start-page: 432 year: 2009 end-page: 452 article-title: Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss publication-title: Front. Biosci. – volume: 15 start-page: 684 year: 2001 end-page: 692 article-title: Characterization of control and immobilized skeletal muscle: an overview from genetic engineering publication-title: FASEB J. – volume: 18 start-page: 39 year: 1998 end-page: 61 article-title: Carnitine metabolism and its regulation in microorganisms and mammals publication-title: Annu. Rev. Nutr. – volume: 83 start-page: 119 year: 2000 end-page: 124 article-title: Anti‐apoptotic effect of acetyl‐l‐carnitine and I‐carnitine in primary cultured neurons publication-title: Jpn. J. Pharmacol. – volume: 79 start-page: 1509 year: 2001 end-page: 1515 article-title: Effect of dietary ‐carnitine on growth performance and body composition in nursery and growing–finishing pigs publication-title: J. Anim. Sci. – volume: 79 start-page: 254 year: 2001 end-page: 260 article-title: Effects of ‐carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers publication-title: J. Anim. Sci. – volume: 31 start-page: 63 year: 1992 end-page: 66 article-title: Proto‐oncogene c‐jun and c‐fos messenger RNAs increase in the liver of carnitine‐deficient juvenile visceral steatosis (jvs) mice publication-title: FEBS Lett. – ident: e_1_2_6_41_2 doi: 10.1007/s10735-010-9267-5 – ident: e_1_2_6_16_2 doi: 10.3382/ps.2007-00325 – ident: e_1_2_6_4_2 doi: 10.1016/j.mam.2004.06.006 – ident: e_1_2_6_56_2 doi: 10.1007/s00418-008-0539-z – ident: e_1_2_6_19_2 doi: 10.1093/jn/134.1.86 – ident: e_1_2_6_39_2 doi: 10.1089/15230860260196191 – ident: e_1_2_6_30_2 doi: 10.1093/nar/30.1.207 – ident: e_1_2_6_52_2 doi: 10.1016/S0047-6374(03)00124-6 – ident: e_1_2_6_3_2 doi: 10.1111/j.1432-1033.1997.00001.x – ident: e_1_2_6_25_2 doi: 10.2527/1996.7471612x – ident: e_1_2_6_38_2 doi: 10.1016/j.jss.2008.07.044 – ident: e_1_2_6_43_2 doi: 10.2741/3253 – ident: e_1_2_6_44_2 doi: 10.1096/fj.00-0150com – ident: e_1_2_6_51_2 doi: 10.1038/ncb1101-1009 – volume: 109 start-page: 146 year: 1997 ident: e_1_2_6_40_2 article-title: Effect of L‐carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients publication-title: Proc. Assoc. Am. Physicians. – ident: e_1_2_6_13_2 doi: 10.3168/jds.S0022-0302(95)76807-2 – ident: e_1_2_6_20_2 doi: 10.2527/2001.7961509x – ident: e_1_2_6_57_2 doi: 10.1074/jbc.M202216200 – ident: e_1_2_6_53_2 doi: 10.1152/ajpendo.00073.2004 – volume-title: Nutrient Requirements of Swine year: 1998 ident: e_1_2_6_26_2 – ident: e_1_2_6_50_2 doi: 10.1385/ENDO:19:1:13 – ident: e_1_2_6_31_2 doi: 10.1111/j.1365-2052.2006.01460.x – ident: e_1_2_6_6_2 doi: 10.1146/annurev.nutr.18.1.39 – ident: e_1_2_6_32_2 doi: 10.1038/nprot.2008.211 – ident: e_1_2_6_12_2 doi: 10.1111/j.2042-3306.2002.tb05431.x – ident: e_1_2_6_55_2 doi: 10.2527/jas.2008-1662 – ident: e_1_2_6_33_2 doi: 10.1038/75556 – ident: e_1_2_6_42_2 doi: 10.1254/jjp.83.119 – ident: e_1_2_6_46_2 doi: 10.3177/jnsv.47.329 – ident: e_1_2_6_34_2 doi: 10.1016/j.jnutbio.2008.07.012 – ident: e_1_2_6_47_2 doi: 10.1111/j.1439-0396.2006.00631.x – ident: e_1_2_6_9_2 doi: 10.1093/gerona/56.3.B140 – ident: e_1_2_6_10_2 doi: 10.1002/jnr.20386 – ident: e_1_2_6_36_2 doi: 10.1016/0014-5793(92)81368-V – ident: e_1_2_6_37_2 doi: 10.1002/(SICI)1098-2744(199707)19:3<180::AID-MC6>3.0.CO;2-I – ident: e_1_2_6_58_2 doi: 10.1080/15216540600871100 – ident: e_1_2_6_18_2 doi: 10.1080/00039420214348 – ident: e_1_2_6_15_2 doi: 10.1080/17450390601117041 – ident: e_1_2_6_7_2 doi: 10.1023/A:1024481016187 – volume-title: Die chemische Untersuchung von Futtermitteln, 3. Ergänzungslieferung year: 1993 ident: e_1_2_6_27_2 – ident: e_1_2_6_5_2 doi: 10.1042/bst0140673 – ident: e_1_2_6_29_2 doi: 10.1016/j.phrs.2007.06.001 – ident: e_1_2_6_35_2 doi: 10.1016/0925-4439(94)90042-6 – ident: e_1_2_6_48_2 doi: 10.1006/clim.1999.4727 – ident: e_1_2_6_11_2 doi: 10.1136/vr.125.6.125 – volume: 79 start-page: 150 year: 2001 ident: e_1_2_6_24_2 article-title: Effects of L‐carnitine on carcass composition and tissue accretion in weanling pigs publication-title: J. Anim. Sci. – ident: e_1_2_6_49_2 doi: 10.1016/0739-7240(94)00011-O – ident: e_1_2_6_22_2 doi: 10.1111/j.1439-0396.2005.00517.x – ident: e_1_2_6_45_2 doi: 10.1080/00071660120109980 – ident: e_1_2_6_21_2 doi: 10.1093/jn/130.7.1809 – ident: e_1_2_6_14_2 doi: 10.2527/2001.791254x – volume: 108 start-page: 1621 year: 1978 ident: e_1_2_6_23_2 article-title: Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig publication-title: J. Nutr. doi: 10.1093/jn/108.10.1621 – ident: e_1_2_6_2_2 doi: 10.1016/S1388-1981(00)00044-5 – ident: e_1_2_6_17_2 doi: 10.2527/1999.77123289x – volume-title: Empfehlungen zur Energie‐ Nährstoffversorgung von Schweinen year: 2006 ident: e_1_2_6_28_2 – ident: e_1_2_6_8_2 doi: 10.1074/jbc.273.32.20378 – ident: e_1_2_6_54_2 doi: 10.1016/j.devcel.2007.01.018 |
SSID | ssj0031243 |
Score | 2.1377351 |
Snippet | Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.... Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.... Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. To gain... Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown.SCOPECarnitine... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 419 |
SubjectTerms | Analysis of Variance Animal Feed Animal Nutritional Physiological Phenomena Animal productions Animals Biological and medical sciences Carnitine Carnitine - pharmacology cytoskeletal proteins diet Diet - veterinary Dietary Supplements Down-Regulation drug effects Energy Metabolism Food industries Fundamental and applied biological sciences. Psychology Gene array Gene expression Gene Expression Profiling gene expression regulation genes Genetic Association Studies growth & development insulin insulin-like growth factor I Insulin-Like Growth Factor I - metabolism Male metabolism Microarray Analysis Muscle muscle fibers muscle protein Muscle, Skeletal Muscle, Skeletal - drug effects Muscle, Skeletal - growth & development muscles pharmacology Pig piglets protein binding skeletal muscle Swine Terrestrial animal productions Transcription Factor 3 Transcription Factor 3 - metabolism transcription factors transcriptome Up-Regulation Vertebrates veterinary Weight Gain |
Title | Dietary L-carnitine alters gene expression in skeletal muscle of piglets |
URI | https://api.istex.fr/ark:/67375/WNG-1Q54NBPQ-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201000293 https://www.ncbi.nlm.nih.gov/pubmed/20938991 https://www.proquest.com/docview/1431609382 https://www.proquest.com/docview/855200871 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BT1x4Q82jMhIqp7SJH3kcgbJUFY1oYUVvlp3Y1WrbbLXJShUnfgK_kV_COK-yiAoJjkk8sTyZ8XxjTz4DvEyksMakOigxOgbC8DgwBQI5bjHaZTZMTVtVeZjH-1NxcCJPfvmLv-OHGBfcvGe087V3cG3q3SvS0PPKLdvSLL-x5Ok-Ix578vy945E_imPwaivsMWYFAkP5wNoYst118bWodNPpBWJVr-ZLXyupa1SX6865-BMQXce1bWCa3AE9DKmrR5nvrBqzU3z9je3xf8Z8F273qJW-7szsHtyw1X0gezPb0G3aU4ue0Xxg9n8AB_4Z9kM__Pj2vfCrLw12Ttu9-Zqi0VpqL_sa3IrOKlrPMf5hIkDPVzV2QReOXsxO8Vb9EKaTd5_f7gf9sQ1Bgbk2Dzw_jsGsJcbZxMUx6j21UcLLorRJhOlTHDkRORY6ZgQ3UmuDWTKLtc4Sa2Wk-SPYqBaV3QQalmlopEyxqRYpd1oYUchMhKVjBWJFAsHw2VTRc5r7ozXOVMfGzJTXmBo1RuDV2P6iY_O4tuUmWoHSpzjVqukn5jd4I0SjiOcIbLemMb5BL-e-PC6R6kv-XkVHUuRvPh4pSWBrzXZGAcYzycMsJfBiMCaFXu23anRlF6saEzIexWHGU0aAXtMmlZ4yCxNeAo87Q7zqwIsi8ifAWnP6y2DVYT45Hq-e_IvQU7jVrbb76rxnsNEsV_Y5wrXGbLUu-RNaYTK5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iZQEb3tDwKEZCZZU28SOPJVCGocxEtHQEO8tO7Go0baaazEgVKz6Bb-RLuM6rGkSFBMskdizfXPuea58cA7yMBTdaJ8ovMDr6XLPI1zkCOWYw2qUmSHTNqhxn0XDCD76Kjk3o_oVp9CH6BTc3Mur52g1wtyC9d6kaelbaRc3NcjtLbAOuc0QbLv_aP-oVpBiGr5pjj1HL5xjMO93GgO6t11-LSxtWzRGtOkNfOLakqtBgtjnp4k9QdB3Z1qFpcBt016mGkTLbXS31bv7tN73H_-r1HbjVAlfyuvG0u3DNlPfA25-aJdkhrbroKck6cf_7cOCeYUNk9PP7j9wtwCyxdVJvz1cE_dYQc9HScEsyLUk1wxCIuQA5W1XYBJlbcj49wVvVA5gM3h2_HfrtyQ1-juk2851EjsbEJcIJxUYRGj4xYcyKvDBxiBlUFFoeWhpYqjnTQimNiTKNlEpjY0So2EPYLOel2QISFEmghUiwqOIJs4prnouUB4WlOcJFD_zuu8m8lTV3p2ucykaQmUpnMdlbzINXffnzRtDjypJb6AZSneBsKyefqdvjDRGQIqTzYKf2jf4NajFzDLlYyC_ZexkeCp69-XQohQfba87TV6AsFSxIEw9edN4kcWC73RpVmvmqwpyMhVGQsoR6QK4okwinmoU5rwePGk-8bMBVRfDvAa396S-dleNscNRfPf6XSs_hxvB4PJKjD9nHJ3CzWXx3ZL2nsLlcrMwzRG9LvV2Pz1-JtDbY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuvKGhUIyEyilt4kceR6AspbRRW1jRm2UndrXaNrvaZKWqJ34Cv5FfwjjJpiyiQoJjEk8sT2Y839iTzwCvYsGN1onyC4yOPtcs8nWOQI4ZjHapCRLdVFUeZNHukO-diJNf_uJv-SH6BTfnGc187Rx8WtjtK9LQ89LOmtIst7HEVuAmjxBOOFh03BNIMYxeTYk9Bi2fYyxf0DYGdHtZfiksrVg1QbDq9HzhiiVVhfqy7UEXf0Kiy8C2iUyDu6AWY2oLUsZb81pv5Ze_0T3-z6DvwZ0OtpI3rZ3dhxumfADezsjUZJN03KJnJFtQ-z-EPfcM-yH7P759z93yS42dk2ZzviJotYaYi64ItySjklRjDICYCZDzeYVdkIkl09Ep3qoewXDw_su7Xb87t8HPMdlmviPI0Zi2RDid2ChCvScmjFmRFyYOMX-KQstDSwNLNWdaKKUxTaaRUmlsjAgVewyr5aQ0a0CCIgm0EAk2VTxhVnHNc5HyoLA0R7Dogb_4bDLvSM3d2RpnsqVjptJpTPYa8-B1337a0nlc23INrUCqU5xr5fAzdTu8IcJRBHQebDam0b9BzcauPi4W8mv2QYZHgmdvD4-k8GBjyXZ6AcpSwYI08eDlwpgkurXbq1GlmcwrzMhYGAUpS6gH5Jo2iXCcWZjxevCkNcSrDpwoQn8PaGNOfxmsPMgGx_3V038RegG3DncGcv9j9mkdbrcr765S7xms1rO5eY7QrdYbjXf-BKrsNYc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+L-carnitine+alters+gene+expression+in+skeletal+muscle+of+piglets&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=KELLER%2C+Janine&rft.au=RINGSEIS%2C+Robert&rft.au=PRIEBE%2C+Stiffen&rft.au=GUTHKE%2C+Reinhard&rft.date=2011-03-01&rft.pub=Wiley&rft.issn=1613-4125&rft.volume=55&rft.issue=3&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1002%2Fmnfr.201000293&rft.externalDBID=n%2Fa&rft.externalDocID=23953098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |