Dietary L-carnitine alters gene expression in skeletal muscle of piglets
Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-s...
Saved in:
Published in | Molecular nutrition & food research Vol. 55; no. 3; pp. 419 - 429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley-VCH Verlag
01.03.2011
WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.201000293 |
Cover
Loading…
Summary: | Scope: Carnitine improves protein accretion, muscle mass, and protein:fat accretion in piglets. The underlying mechanisms, however, are largely unknown. Methods and results: To gain insight into mechanisms through which carnitine exerts these effects, we fed piglets either a control or a carnitine-supplemented diet, and analyzed the transcriptome in skeletal muscle. Carnitine concentrations in plasma and muscle were about four-fold higher in the carnitine group when compared to the control group. Transcript profiling revealed 211 genes to be differentially expressed in muscle by carnitine supplementation. The identified genes were mainly involved in molecular processes such as cytoskeletal protein binding, insulin-like growth factor (IGF) binding, transcription factor activity, and insulin receptor binding. Identified genes with the molecular function transcription factor activity encoded primarily transcription factors, most of which were down-regulated by carnitine, including pro-apoptotic transcription factors such as proto-oncogene c-fos, proto-oncogene c-jun and activating transcription factor 3. Furthermore, atrophy-related genes such as atrogin-1, MuRF1, and DRE1 were significantly down-regulated by carnitine. IGF signalling and insulin signalling were identified as significantly up-regulated regulatory pathways in the carnitine group. Conclusion: Carnitine may have beneficial effects on skeletal muscle mass through stimulating the anabolic IGF-1 pathway and suppressing pro-apoptotic and atrophy-related genes, which are involved in apoptosis of muscle fibers and proteolysis of muscle proteins, respectively. |
---|---|
Bibliography: | http://dx.doi.org/10.1002/mnfr.201000293 ArticleID:MNFR201000293 istex:8FF8C19802B97A1308B7760E3877D1D820CA8F80 ark:/67375/WNG-1Q54NBPQ-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1613-4125 1613-4133 1613-4133 |
DOI: | 10.1002/mnfr.201000293 |