Electroporation in a Model of Cardiac Defibrillation

Electroporation in a Model of Cardiac Defibrillation. Introduction: It is known that highstrength shock disrupts the lipid matrix of the myocardial cell membrane and forms reversible aqueous pores across the membrane. This process is known as “electroporation.” However, it remains unclear whether el...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular electrophysiology Vol. 12; no. 12; pp. 1393 - 1403
Main Authors ASHIHARA, TAKASHI, YAO, TAKENORI, NAMBA, TSUNETOYO, ITO, MAKOTO, IKEDA, TAKANORI, KAWASE, AYAKA, TODA, SUNAO, SUZUKI, TORU, INAGAKI, MASASHI, SUGIMACHI, MASARU, KINOSHITA, MASAHIKO, NAKAZAWA, KAZUO
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Inc 01.12.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electroporation in a Model of Cardiac Defibrillation. Introduction: It is known that highstrength shock disrupts the lipid matrix of the myocardial cell membrane and forms reversible aqueous pores across the membrane. This process is known as “electroporation.” However, it remains unclear whether electroporation contributes to the mechanism of ventricular defibrillation. The aim of this computer simulation study was to examine the possible role of electroporation in the success of defibrillation shock. Methods and Results: Using a modified Luo‐Rudy‐1 model, we simulated two‐dimensional myocardial tissue with a homogeneous bidomain nature and unequal anisotropy ratios. Spiral waves were induced by the S1‐S2 method. Next, monophasic defibrillation shocks were delivered externally via two line electrodes. For nonelectroporating tissue, termination of ongoing fibrillation succeeded; however, new spiral waves were initiated, even with high‐strength shock (24 V/cm). For electroporating tissue, high‐strength shock (24 V/cm) was sufficient to extinguish ongoing fibrillation and did not initiate any new spiral waves. Weak shock (16 to 20 V/cm) also extinguished ongoing fibrillation; however, in contrast to the highstrength shock, new spiral waves were initiated. Success in defibrillation depended on the occurrence of electroporation‐mediated anodal‐break excitation from the physical anode and the virtual anode. Some excitation wavefronts following electrical shock used a deexcited area with recovered excitability as a pass‐through point; therefore, electroporation‐mediated anodal‐break excitation is necessary to block out the pass‐through point, resulting in successful defibrillation. Conclusion: The electroporation‐mediated anodal‐break excitation mechanism may play an important role in electrical defibrillation.
Bibliography:istex:2F4B1549C859EB2771E640754D7C532199ADAE8D
ArticleID:JCE1393
ark:/67375/WNG-22LBZZHP-6
This study was supported in part by Grant‐in‐Aid for Scientific Research (A) from The Ministry of Education, Science, Sports and Culture (12308046); Grant‐in‐Aid for Scientific Research (C) from The Ministry of Education, Science, Sports and Culture (12670660); Grant‐in‐Aid for Scientific Research (C) from The Ministry of Education, Science, Sports and Culture (12670698); and Grant‐in‐Aid for Research and Development for Applying Advanced Computational Science and Technology (12B‐1).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1045-3873
1540-8167
DOI:10.1046/j.1540-8167.2001.01393.x