Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations
Idealized numerical simulations are conducted in which an axisymmetric, moist, rotating updraft free of rain is initiated, after which a downdraft is imposed by precipitation loading. The experiments are designed to emulate a supercell updraft that has rotation aloft initially. In the idealized simu...
Saved in:
Published in | Journal of the atmospheric sciences Vol. 60; no. 6; pp. 795 - 823 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston, MA
American Meteorological Society
15.03.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Idealized numerical simulations are conducted in which an axisymmetric, moist, rotating updraft free of rain is initiated, after which a downdraft is imposed by precipitation loading. The experiments are designed to emulate a supercell updraft that has rotation aloft initially. In the idealized simulations, the rain curtain and downdraft are annular, rather than hook-shaped, as is typically observed. The downdraft transports angular momentum, which is initially a maximum aloft and zero at the surface, toward the ground. Once reaching the ground, the circulation-rich air is converged beneath the updraft and a tornado develops. The intensity and longevity of the tornado depend on the thermodynamic characteristics of the angular momentum-transporting downdraft, which are sensitive to the ambient low-level relative humidity and precipitation character of the rain curtain. For large low-level relative humidity and a rain curtain having a relatively small precipitation concentration, the imposed downdraft is warmer than when the low-level relative humidity is small and the precipitation concentration of the rain curtain is large. The simulated tornadoes are stronger and longer-lived when the imposed downdrafts are relatively warm compared to when the downdrafts are relatively cold, owing to a larger amount of convergence of circulation-rich downdraft air. The results may explain some recent observations of the tendency for supercells to be tornadic when their rear-flank downdrafts are associated with relatively small temperature deficits. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/1520-0469(2003)060<0795:trftto>2.0.co;2 |