Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations

Idealized numerical simulations are conducted in which an axisymmetric, moist, rotating updraft free of rain is initiated, after which a downdraft is imposed by precipitation loading. The experiments are designed to emulate a supercell updraft that has rotation aloft initially. In the idealized simu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 60; no. 6; pp. 795 - 823
Main Authors MARKOWSKI, Paul M, STRAKA, Jerry M, RASMUSSEN, Erik N
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 15.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Idealized numerical simulations are conducted in which an axisymmetric, moist, rotating updraft free of rain is initiated, after which a downdraft is imposed by precipitation loading. The experiments are designed to emulate a supercell updraft that has rotation aloft initially. In the idealized simulations, the rain curtain and downdraft are annular, rather than hook-shaped, as is typically observed. The downdraft transports angular momentum, which is initially a maximum aloft and zero at the surface, toward the ground. Once reaching the ground, the circulation-rich air is converged beneath the updraft and a tornado develops. The intensity and longevity of the tornado depend on the thermodynamic characteristics of the angular momentum-transporting downdraft, which are sensitive to the ambient low-level relative humidity and precipitation character of the rain curtain. For large low-level relative humidity and a rain curtain having a relatively small precipitation concentration, the imposed downdraft is warmer than when the low-level relative humidity is small and the precipitation concentration of the rain curtain is large. The simulated tornadoes are stronger and longer-lived when the imposed downdrafts are relatively warm compared to when the downdrafts are relatively cold, owing to a larger amount of convergence of circulation-rich downdraft air. The results may explain some recent observations of the tendency for supercells to be tornadic when their rear-flank downdrafts are associated with relatively small temperature deficits.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-4928
1520-0469
DOI:10.1175/1520-0469(2003)060<0795:trftto>2.0.co;2