Deformation mechanisms in nanocrystalline palladium at large strains

The mechanical behaviour and microstructure evolution of nanocrystalline palladium was investigated. Material with an initial grain size ∼10 nm was prepared by inert gas condensation. Instrumented high-pressure torsion straining was used to characterize the flow stress during plastic deformation to...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 57; no. 11; pp. 3391 - 3401
Main Authors Ivanisenko, Yu, Kurmanaeva, L., Weissmueller, J., Yang, K., Markmann, J., Rösner, H., Scherer, T., Fecht, H.-J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanical behaviour and microstructure evolution of nanocrystalline palladium was investigated. Material with an initial grain size ∼10 nm was prepared by inert gas condensation. Instrumented high-pressure torsion straining was used to characterize the flow stress during plastic deformation to shear strains up to 300. A change in primary deformation mechanism was induced by stress-induced grain growth. For grain sizes <40 nm, grain boundary mediated processes (shear banding, grain boundary sliding and grain rotation) controlled the deformation, with dislocation slip, twinning, and grain boundary diffusion providing the accommodation. For larger grain sizes, the operative deformation mechanism was dislocation slip.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2009.03.049