A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization

A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tunçel. We specialize Tun...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 194; no. 1-2; pp. 341 - 370
Main Authors Dahl, Joachim, Andersen, Erling D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-021-01631-4

Cover

Loading…
More Information
Summary:A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tunçel. We specialize Tunçel’s primal-dual scalings for the important case of 3 dimensional exponential-cones, resulting in a practical algorithm with good numerical performance, on level with standard symmetric cone ( e.g. , quadratic cone) algorithms. A significant contribution of the paper is a novel higher-order search direction, similar in spirit to a Mehrotra corrector for symmetric cone algorithms. To a large extent, the efficiency of our proposed algorithm can be attributed to this new corrector.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01631-4