Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestr...
Saved in:
Published in | Molecular and cellular biochemistry Vol. 475; no. 1-2; pp. 261 - 276 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-020-03879-4 |