Characterization of rare ABCC8 variants identified in Spanish pulmonary arterial hypertension patients

Pulmonary Arterial Hypertension (PAH) is a rare and fatal disease where knowledge about its genetic basis continues to increase. In this study, we used targeted panel sequencing in a cohort of 624 adult and pediatric patients from the Spanish PAH registry. We identified 11 rare variants in the ATP-b...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 15135
Main Authors Lago-Docampo, Mauro, Tenorio, Jair, Hernández-González, Ignacio, Pérez-Olivares, Carmen, Escribano-Subías, Pilar, Pousada, Guillermo, Baloira, Adolfo, Arenas, Miguel, Lapunzina, Pablo, Valverde, Diana
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group UK 15.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pulmonary Arterial Hypertension (PAH) is a rare and fatal disease where knowledge about its genetic basis continues to increase. In this study, we used targeted panel sequencing in a cohort of 624 adult and pediatric patients from the Spanish PAH registry. We identified 11 rare variants in the ATP-binding Cassette subfamily C member 8 (ABCC8) gene, most of them with splicing alteration predictions. One patient also carried another variant in SMAD1 gene (c.27delinsGTAAAG). We performed an ABCC8 in vitro biochemical analyses using hybrid minigenes to confirm the correct mRNA processing of 3 missense variants (c.211C > T p.His71Tyr, c.298G > A p.Glu100Lys and c.1429G > A p.Val477Met) and the skipping of exon 27 in the novel splicing variant c.3394G > A. Finally, we used structural protein information to further assess the pathogenicity of the variants. The results showed 11 novel changes in ABCC8 and 1 in SMAD1 present in PAH patients. After in silico and in vitro biochemical analyses, we classified 2 as pathogenic (c.3288_3289del and c.3394G > A), 6 as likely pathogenic (c.211C > T, c.1429G > A, c.1643C > T, c.2422C > A, c.2694 + 1G > A, c.3976G > A and SMAD1 c.27delinsGTAAAG) and 3 as Variants of Uncertain Significance (c.298G > A, c.2176G > A and c.3238G > A). In all, we show that coupling in silico tools with in vitro biochemical studies can improve the classification of genetic variants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-72089-1