Mutations of CNTNAP1 led to defects in neuronal development

Mutations of CNTNAP1 were associated with myelination disorders, suggesting the role of CNTNAP1 in myelination processes. Whether CNTNAP1 may have a role in early cortical neuronal development is largely unknown. In this study, we identified 4 compound heterozygous mutations of CNTNAP1 in 2 Chinese...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 5; no. 21
Main Authors Li, Wanxing, Yang, Lin, Tang, Chuanqing, Liu, Kaiyi, Lu, Yulan, Wang, Huijun, Yan, Kai, Qiu, Zilong, Zhou, Wenhao
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 05.11.2020
American Society for Clinical investigation
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutations of CNTNAP1 were associated with myelination disorders, suggesting the role of CNTNAP1 in myelination processes. Whether CNTNAP1 may have a role in early cortical neuronal development is largely unknown. In this study, we identified 4 compound heterozygous mutations of CNTNAP1 in 2 Chinese families. Using mouse models, we found that CNTNAP1 is highly expressed in neurons and is located predominantly in MAP2+ neurons during the early developmental stage. Importantly, Cntnap1 deficiency results in aberrant dendritic growth and spine development in vitro and in vivo, and it delayed migration of cortical neurons during early development. Finally, we found that the number of parvalbumin+ neurons in the cortex and hippocampus of Cntnap1-/- mice is strikingly increased by P15, suggesting that excitation/inhibition balance is impaired. Together, this evidence elucidates a critical function of CNTNAP1 in cortical development, providing insights underlying molecular and circuit mechanisms of CNTNAP1-related disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.135697