Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion

Interspecies electron transfer is a fundamental factor determining the efficiency of anaerobic digestion (AD), which involves syntrophy between fermentative bacteria and methanogens. Direct interspecies electron transfer (DIET) induced by conductive materials can optimize this process offering a sig...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 10; pp. 158 - 170
Main Authors Lin, Richen, Deng, Chen, Cheng, Jun, Xia, Ao, Lens, Piet N.L., Jackson, Stephen A., Dobson, Alan D.W., Murphy, Jerry D.
Format Journal Article
LanguageEnglish
Published United States Elsevier 21.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interspecies electron transfer is a fundamental factor determining the efficiency of anaerobic digestion (AD), which involves syntrophy between fermentative bacteria and methanogens. Direct interspecies electron transfer (DIET) induced by conductive materials can optimize this process offering a significant improvement over indirect electron transfer. Herein, conductive graphene was applied in the AD of protein-derived glycine to establish DIET. The electron-producing reaction via DIET is thermodynamically more favorable and exhibits a more negative Gibbs free energy value (-60.0 kJ/mol) than indirect hydrogen transfer (-33.4 kJ/mol). The Gompertz model indicated that the kinetic parameters exhibited linear correlations with graphene addition from 0.25 to 1.0 g/L, leading to the highest increase in peak biomethane production rate of 28%. Sedimentibacter (7.8% in abundance) and archaea Methanobacterium (71.1%) and Methanosarcina (11.3%) might be responsible for DIET. This research can open up DIET to a range of protein-rich substrates, such as algae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2018.11.030