Protection against Staphylococcus aureus bacteremia-induced mortality depends on ILC2s and eosinophils
The dysregulated, unbalanced immune response of sepsis results in a mortality exceeding 20%, yet recent findings by our group indicate that patients with allergic, type 2-mediated immune diseases are protected from developing sepsis. We evaluated CD4+ Th cell polarization among patients with Staphyl...
Saved in:
Published in | JCI insight Vol. 4; no. 6 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
21.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The dysregulated, unbalanced immune response of sepsis results in a mortality exceeding 20%, yet recent findings by our group indicate that patients with allergic, type 2-mediated immune diseases are protected from developing sepsis. We evaluated CD4+ Th cell polarization among patients with Staphylococcus aureus bacteremia and confirmed that survivors had a higher percentage of circulating Th2 cells but lower frequencies of Th17 cells and neutrophils early in the course of infection. To establish the mechanism of this protection, we used a mouse model of lethal S. aureus bacteremia and found that intratracheal pretreatment with the type 2-initiating cytokine IL-33 activated pulmonary type 2 innate lymphoid cells (ILC2s) and promoted eosinophilia. In addition, stimulation of type 2 immunity before lethal infection suppressed the pulmonary neutrophilic response to S. aureus. Mice lacking functional ILC2s did not respond to IL-33 and were not protected from lethal bacteremia, but treatment of these mice with the type 2 cytokines IL-5 and IL-13 rescued them from death. Depletion of eosinophils abrogated IL-33-mediated protection, indicating that eosinophilia is also necessary for the survival benefit. Thus, we have identified a potentially novel mechanism by which type 2 immunity can balance dysregulated septic inflammatory responses, thereby clarifying the protective benefit of type 2 immune diseases on sepsis mortality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2379-3708 2379-3708 |
DOI: | 10.1172/jci.insight.124168 |