miR-9-5p regulates immunometabolic and epigenetic pathways in β-glucan-trained immunity via IDH3α

Trained immunity, induced by β-glucan in monocytes, is mediated by activating metabolic pathways that result in epigenetic rewiring of cellular functional programs; however, molecular mechanisms underlying these changes remain unclear. Here, we report a key immunometabolic and epigenetic pathway med...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 6; no. 9
Main Authors Su, Haibo, Liang, Zhongping, Weng, ShuFeng, Sun, Chaonan, Huang, Jiaxin, Zhang, TianRan, Wang, Xialian, Wu, Shanshan, Zhang, Zhi, Zhang, Yiqi, Gong, Qing, Xu, Ying
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 10.05.2021
American Society for Clinical investigation
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Trained immunity, induced by β-glucan in monocytes, is mediated by activating metabolic pathways that result in epigenetic rewiring of cellular functional programs; however, molecular mechanisms underlying these changes remain unclear. Here, we report a key immunometabolic and epigenetic pathway mediated by the miR-9-5p-isocitrate dehydrogenase 3α (IDH3α) axis in trained immunity. We found that β-glucan-trained miR-9-5p-/- monocytes showed decreased IL-1β, IL-6, and TNF-α production after LPS stimulation. Trained miR-9-5p-/- mice produced decreased levels of proinflammatory cytokines upon rechallenge in vivo and had worse protection against Candida albicans infection. miR-9-5p targeted IDH3α and reduced α-ketoglutarate (α-KG) levels to stabilize HIF-1α, which promoted glycolysis. Accumulating succinate and fumarate via miR-9-5p action integrated immunometabolic circuits to induce histone modifications by inhibiting KDM5 demethylases. β-Glucan-trained monocytes exhibited low IDH3α levels, and IDH3α overexpression blocked the induction of trained immunity by monocytes. Monocytes with IDH3α variants from autosomal recessive retinitis pigmentosa patients showed a trained immunity phenotype at immunometabolic and epigenetic levels. These findings suggest that miR-9-5p and IDH3α act as critical metabolic and epigenetic switches in trained immunity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authorship note: HS and ZL contributed equally to this work.
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.144260