Mitogen-activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells

The abundance and activity of three subgroups of mitogen-activated protein (MAP) kinases, the extracellular signal regulated kinase 1 (ERK1), stress-activated protein kinase 1/ Jun N-terminal kinase (SAPK1), and stress-activated protein kinase 2/ p38 (SAPK2), were measured in gill epithelium of the...

Full description

Saved in:
Bibliographic Details
Published inComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology Vol. 129; no. 4; pp. 821 - 829
Main Authors Kültz, Dietmar, Avila, Kristina
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.07.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The abundance and activity of three subgroups of mitogen-activated protein (MAP) kinases, the extracellular signal regulated kinase 1 (ERK1), stress-activated protein kinase 1/ Jun N-terminal kinase (SAPK1), and stress-activated protein kinase 2/ p38 (SAPK2), were measured in gill epithelium of the euryhaline teleost Fundulus heteroclitus exposed for 1 h to 4 weeks to hyper- and hyposmotic stress. The abundance of ERK1, SAPK1 and SAPK2 was analyzed by standard Western immunodetection. MAP kinase activity is a function of phosphorylation and was measured using phospho-specific and MAP kinase subgroup-specific antibodies. The abundance of the 63 kDa fish isoform of SAPK2 increases significantly during hyper- but not hyposmotic stress while ERK1 and SAPK1 protein levels remain unchanged during both types of osmotic stress. In contrast to this small effect of osmotic stress on MAP kinase abundance, the activity of all MAP kinases decreases significantly in response to hyperosmotic stress and increases significantly during hyposmotic stress. These results demonstrate for the first time that the activity of all major MAP kinases is osmoregulated in gill epithelium of euryhaline fish. Based on these results we conclude that MAP kinases are important components of salinity adaptation and participate in osmosensory signaling pathways in gill epithelium of euryhaline fishes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1096-4959
1879-1107
DOI:10.1016/S1096-4959(01)00395-5