Analysis of role of rat cerebral pericytes in cerebral vasospasm after subarachnoid hemorrhage and molecular mechanism of neurovascular injury

To investigate mechanism of pericytes in the early stage of subarachnoid haemorrhage (SAH) and its associated microvascular spasm and neurovascular injury, 100 healthy 8-week-old Sprague-Dawley male rats were taken as subjects and divided into four groups: group A (sham operation, control group), gr...

Full description

Saved in:
Bibliographic Details
Published inBioengineered Vol. 12; no. 1; pp. 3957 - 3967
Main Authors Yan, Zhenxing, Zou, Yang, Deng, Yiting, Liu, Siqin, Li, Kaifeng, Yang, Juan, Guo, Xihua, He, Rongni, Zheng, Wenxia, Xie, Huifang
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate mechanism of pericytes in the early stage of subarachnoid haemorrhage (SAH) and its associated microvascular spasm and neurovascular injury, 100 healthy 8-week-old Sprague-Dawley male rats were taken as subjects and divided into four groups: group A (sham operation, control group), group B (SAH operation group), group C (SAH operation group treated with scutellarin), and group D (SAH operation group treated with L-nitro-arginine). 72 hours after the operation, the rats were conducted assessment of neurological impairment, observation of microangiography, detection of blood-brain barrier permeability, observation of skull base haemorrhage, identification of pericyte culture, and measurement of blood nitric oxide. The results showed that neurological impairment score, degree of micro-vasoconstriction, and BBB permeability of group C were significantly better than those of group B and D (P<0.05), there was no significant difference between group C and group A (P>0.05). There were significantly fewer blood clots in the brain of group C, and the order of expression levels of α-smooth muscle actin (α-SMA) in perioperative cells of the four groups from highest to lowest were D, B, C, and A. Nitric oxide concentration inhibited expression of α-SMA in pericytes after SAH at both protein and mRNA levels. The detection results of nitric oxide in the blood of four groups of rats confirmed that pericyte phenotype conversion and actin α-SMA expression could be prevented by upregulation of nitric oxide in serum, so as to relieve pathological symptoms after SAH operation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work as co- Corresponding author
These authors contributed equally to this work as co-first author
ISSN:2165-5979
2165-5987
2165-5987
DOI:10.1080/21655979.2021.1947630