Climate change impact on soil salt accumulation in Khon Kaen, Northeast Thailand
In northeast Thailand, 17% of the total agricultural land is classified as salt-affected. In the future, climate change may exacerbate salt-affected soil problems. Therefore, in this study, we conducted a field survey to evaluate seasonal changes in soil electrical conductivity (ECe) in salt-affecte...
Saved in:
Published in | Hydrological Research Letters Vol. 15; no. 4; pp. 92 - 97 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)
2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In northeast Thailand, 17% of the total agricultural land is classified as salt-affected. In the future, climate change may exacerbate salt-affected soil problems. Therefore, in this study, we conducted a field survey to evaluate seasonal changes in soil electrical conductivity (ECe) in salt-affected paddy areas of Ban Phai District, Khon Kaen Province, northeast Thailand. Fifteen soil samples were collected every 2 weeks from October 2016 to December 2018, and the ECe, soil water content, and soil textures were analyzed. Then, the HYDRUS-1D model was applied to estimate seasonal changes in the salinity level, and the simulated results corresponded well with observed data. Using HYDRUS-1D and the global circulation model (MIROC5) outputs under the Representative Concentration Pathways 8.5 scenario, future ECe was predicted. Under a temperature increase of 2.8°C from 2016 to 2100, annual potential evapotranspiration increased from 1,430 mm (2016–2025) to 1,584 mm (2081–2100). The average ECe in cultivation season increased from 2.63 dS/m (2016–2025) to 3.31 dS/m (2081–2100). As a countermeasure to mitigate soil salt accumulation, a 5 cm reduction in groundwater level offsets the negative impact of climate change, and a 10 cm reduction significantly improves the soil ECe relative to the current soil salinity level. |
---|---|
ISSN: | 1882-3416 1882-3416 |
DOI: | 10.3178/hrl.15.92 |