Climate change impact on soil salt accumulation in Khon Kaen, Northeast Thailand

In northeast Thailand, 17% of the total agricultural land is classified as salt-affected. In the future, climate change may exacerbate salt-affected soil problems. Therefore, in this study, we conducted a field survey to evaluate seasonal changes in soil electrical conductivity (ECe) in salt-affecte...

Full description

Saved in:
Bibliographic Details
Published inHydrological Research Letters Vol. 15; no. 4; pp. 92 - 97
Main Authors Yoshida, Koshi, Sritumboon, Supranee, Srisutham, Mallika, Homma, Koki, Maki, Masayasu, Oki, Kazuo
Format Journal Article
LanguageEnglish
Published Tokyo Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH) 2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In northeast Thailand, 17% of the total agricultural land is classified as salt-affected. In the future, climate change may exacerbate salt-affected soil problems. Therefore, in this study, we conducted a field survey to evaluate seasonal changes in soil electrical conductivity (ECe) in salt-affected paddy areas of Ban Phai District, Khon Kaen Province, northeast Thailand. Fifteen soil samples were collected every 2 weeks from October 2016 to December 2018, and the ECe, soil water content, and soil textures were analyzed. Then, the HYDRUS-1D model was applied to estimate seasonal changes in the salinity level, and the simulated results corresponded well with observed data. Using HYDRUS-1D and the global circulation model (MIROC5) outputs under the Representative Concentration Pathways 8.5 scenario, future ECe was predicted. Under a temperature increase of 2.8°C from 2016 to 2100, annual potential evapotranspiration increased from 1,430 mm (2016–2025) to 1,584 mm (2081–2100). The average ECe in cultivation season increased from 2.63 dS/m (2016–2025) to 3.31 dS/m (2081–2100). As a countermeasure to mitigate soil salt accumulation, a 5 cm reduction in groundwater level offsets the negative impact of climate change, and a 10 cm reduction significantly improves the soil ECe relative to the current soil salinity level.
ISSN:1882-3416
1882-3416
DOI:10.3178/hrl.15.92