Person authentication from neural activity of face-specific visual self-representation
In this paper, we propose a new biometric system based on the neurophysiological features of face-specific visual self representation in a human brain, which can be measured by ElectroEncephaloGraphy (EEG). First, we devise a novel stimulus presentation paradigm, using self-face and non-self-face im...
Saved in:
Published in | Pattern recognition Vol. 46; no. 4; pp. 1159 - 1169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose a new biometric system based on the neurophysiological features of face-specific visual self representation in a human brain, which can be measured by ElectroEncephaloGraphy (EEG). First, we devise a novel stimulus presentation paradigm, using self-face and non-self-face images as stimuli for a person authentication system that can validate a person's identity by comparing the observed trait with those stored in the database (one-to-one matching). Unlike previous methods that considered the brain activities of the resting state, motor imagery, or visual evoked potentials, there are evidences that the proposed paradigm generates unique subject-specific brain-wave patterns in response to self- and non-self-face images from psychology and neurophysiology studies. Second, we devise a method for adaptive selection of EEG channels and time intervals for each subject in a discriminative manner. This makes the system immune to forgery since the selected EEG channels and time intervals for a client may not be consistent with those of imposters in terms of the latency and amplitude of the brain-waves. Based on our experimental results and analysis, it is believed that the proposed person authentication system can be considered as a new biometric authentication system.
► A new EEG-based biometric system using face-specific visual self representation. ► A novel stimulus presentation paradigm to induce unique brain patterns. ► A selection method of subject-specific EEG channels and time intervals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0031-3203 1873-5142 |
DOI: | 10.1016/j.patcog.2012.10.023 |