Imaging through the Whole Brain of Drosophila at λ/20 Super-resolution
Recently, many super-resolution technologies have been demonstrated, significantly affecting biological studies by observation of cellular structures down to nanometer precision. However, current super-resolution techniques mostly rely on wavefront engineering or wide-field imaging of signal blinkin...
Saved in:
Published in | iScience Vol. 14; pp. 164 - 170 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
26.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2019.03.025 |
Cover
Loading…
Summary: | Recently, many super-resolution technologies have been demonstrated, significantly affecting biological studies by observation of cellular structures down to nanometer precision. However, current super-resolution techniques mostly rely on wavefront engineering or wide-field imaging of signal blinking or fluctuation, and thus imaging depths are limited due to tissue scattering or aberration. Here we present a technique that is capable of imaging through an intact Drosophila brain with 20-nm lateral resolution at ∼200 μm depth. The spatial resolution is provided by molecular localization of a photoconvertible fluorescent protein Kaede, whose red form is found to exhibit blinking state. The deep-tissue observation is enabled by optical sectioning of spinning disk microscopy, as well as reduced scattering from optical clearing. Together these techniques are readily available for many biologists, providing three-dimensional resolution of densely entangled dendritic fibers in a complete Drosophila brain. The method paves the way toward whole-brain neural network studies and is applicable to other high-resolution bioimaging. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2019.03.025 |