Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications

Metamaterials and metasurfaces of artificial micro-/nano- structures functioning from microwave, terahertz, to infrared regime have enabled numerous applications from bioimaging, cancer detection and immunoassay to on-body health monitoring systems in the past few decades. Recently, the trend of tur...

Full description

Saved in:
Bibliographic Details
Published inPhotoniX Vol. 5; no. 1; pp. 2 - 28
Main Authors Tian, Jiangtao, Cao, Wenhan
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metamaterials and metasurfaces of artificial micro-/nano- structures functioning from microwave, terahertz, to infrared regime have enabled numerous applications from bioimaging, cancer detection and immunoassay to on-body health monitoring systems in the past few decades. Recently, the trend of turning metasurface devices flexible and stretchable has arisen in that the flexibility and stretchability not only makes the device more biocompatible and wearable, but also provides unique control and manipulation of the structural and geometrical reconfiguration of the metasurface in a creative manner, resulting in an extraordinary tunability for biomedical sensing and detection purposes. In this Review, we summarize recent advances in the design and fabrication techniques of stretchable reconfigurable metasurfaces and their applications to date thereof, and put forward a perspective for future development of stretchable reconfigurable metamaterials and metasurfaces.
ISSN:2662-1991
2662-1991
DOI:10.1186/s43074-023-00116-1