Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications
This paper presents a study to use the metallic three dimensional (3-D) printing technology for antenna implementations up to 325 GHz. Two different printing technologies and materials are used, namely binder jetting/sintering on 316L stainless steel and selective laser melting (SLM) on Cu-15Sn. Pha...
Saved in:
Published in | IEEE transactions on terahertz science and technology Vol. 6; no. 4; pp. 592 - 600 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a study to use the metallic three dimensional (3-D) printing technology for antenna implementations up to 325 GHz. Two different printing technologies and materials are used, namely binder jetting/sintering on 316L stainless steel and selective laser melting (SLM) on Cu-15Sn. Phases, microstructure, and surface roughness are investigated on different materials. Balancing between the cost and performance, the manually polished Cu-15Sn is selected to develop a series of conical horn antennas at the E-(60-90 GHz), D(110-170 GHz), and H-band (220-325 GHz). Good agreement is observed between the simulated and measured antenna performance. The antennas' impedance bandwidth (|S 11 | <; -20 dB) cover the whole operational band, with in-band gain of >22.5, >22, and >21.5 dBi for the E-, D-, and H-band antennas, respectively. Compared with the traditional injection molding and micromachining for metallic horn antenna implementation, the 3-D printed metallic horn antenna features environmental friendliness, low cost, and short turn-around time. Compared with the nonmetallic 3-D printed antennas, they feature process simplicity and mechanical robustness. It proves great potential of the metallic 3-D printing technology for both industrial mass production and prototyping. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2156-342X 2156-3446 2156-3446 |
DOI: | 10.1109/TTHZ.2016.2562508 |