Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury

INTRODUCTIONThe clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories.M...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 6; no. 7
Main Authors Andargie, Temesgen E., Tsuji, Naoko, Seifuddin, Fayaz, Jang, Moon Kyoo, Yuen, Peter S.T., Kong, Hyesik, Tunc, Ilker, Singh, Komudi, Charya, Ananth, Wilkins, Kenneth, Nathan, Steven, Cox, Andrea, Pirooznia, Mehdi, Star, Robert A., Agbor-Enoh, Sean
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 08.04.2021
American Society for Clinical investigation
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:INTRODUCTIONThe clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories.METHODSWe conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza.RESULTSWe found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist.CONCLUSIONcfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19-induced tissue injury.FUNDINGIntramural Targeted Anti-COVID-19 grant, NIH.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authorship note: TEA and NT contributed equally to this work.
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.147610