Underestimation in temporal numerosity judgments computationally explained by population coding model
The ability to judge numerosity is essential to an animal’s survival. Nevertheless, the number of signals presented in a sequence is often underestimated. We attempted to elucidate the mechanism for the underestimation by means of computational modeling based on population coding. In the model, the...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 15632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.09.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ability to judge numerosity is essential to an animal’s survival. Nevertheless, the number of signals presented in a sequence is often underestimated. We attempted to elucidate the mechanism for the underestimation by means of computational modeling based on population coding. In the model, the population of neurons which were selective to the logarithmic number of signals responded to sequential signals and the population activity was integrated by a temporal window. The total number of signals was decoded by a weighted average of the integrated activity. The model predicted well the general trends in the human data while the prediction was not fully sufficient for the novel aging effect wherein underestimation was significantly greater for the elderly than for the young in specific stimulus conditions. Barring the aging effect, we can conclude that humans judge the number of signals in sequence by temporally integrating the neural representations of numerosity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-19941-8 |