Evaluation of the ordered subset convex algorithm for cone-beam CT

Statistical methods for image reconstruction such as maximum likelihood expectation maximization (ML-EM) are more robust and flexible than analytical inversion methods and allow for accurate modelling of the photon transport and noise. Statistical reconstruction is prohibitively slow when applied to...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 50; no. 4; pp. 613 - 623
Main Authors Kole, J S, Beekman, F J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 21.02.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Statistical methods for image reconstruction such as maximum likelihood expectation maximization (ML-EM) are more robust and flexible than analytical inversion methods and allow for accurate modelling of the photon transport and noise. Statistical reconstruction is prohibitively slow when applied to clinical x-ray cone-beam CT due to the large data sets and the high number of iterations required for reconstructing high resolution images. One way to reduce the reconstruction time is to use ordered subsets of projections during the iterations, which has been successfully applied to fan-beam x-ray CT. In this paper, we quantitatively analyse the use of ordered subsets in concert with the convex algorithm for cone-beam x-ray CT reconstruction, for the case of circular acquisition orbits. We focus on the reconstructed image accuracy of a 3D head phantom. Acceleration factors larger than 300 were obtained with errors smaller than 1%, with the preservation of signal-to-noise ratio. Pushing the acceleration factor towards 600 by using an increasing number of subsets increases the reconstruction error up to 5% and significantly increases noise. The results indicate that the use of ordered subsets can be extremely useful for cone-beam x-ray CT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/50/4/004