Coexistence of Amorphous and Crystalline Calcium Carbonate in Skeletal Tissues

We describe a new type of composite skeletal tissues in which calcite and stabilized amorphous calcium carbonate (ACC) coexist in well-defined domains. The organisms that form such structures are widely separated in the animal kingdom phylogenetic tree: calcareous sponges and ascidians. This paper c...

Full description

Saved in:
Bibliographic Details
Published inConnective tissue research Vol. 44; no. 1; pp. 20 - 25
Main Authors Aizenberg, J., Weiner, S., Addadi, L.
Format Journal Article
LanguageEnglish
Published England Informa UK Ltd 2003
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe a new type of composite skeletal tissues in which calcite and stabilized amorphous calcium carbonate (ACC) coexist in well-defined domains. The organisms that form such structures are widely separated in the animal kingdom phylogenetic tree: calcareous sponges and ascidians. This paper compares the microstructures of their composite skeletal elements: The triradiate spicules from the sponge Clathrina are composed of a core of calcite embedded in a thick layer of ACC and covered by a thin calcitic envelope; the tunic spicules from the ascidian Pyura pachydermatina are composed of a core of ACC enveloped by an insoluble organic sheath and covered by a thick calcitic layer. We compare and contrast the macromolecules associated with different amorphous and crystalline phases and their ability to induce the formation of stabilized ACC in vitro.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8207
1607-8438
DOI:10.1080/03008200390152034